K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2020

a, - Xét tứ giác ABNC có : \(\left\{{}\begin{matrix}AM=MN\\BM=CM\end{matrix}\right.\) ( gt )

=> Tứ giác ABNC là hình bình hành .

=> CN // AB .

b, - Ta có : Tứ giác ABNC là hình bình hành .

=> AB = CN , AC = BN .

- Xét \(\Delta ABC\)\(\Delta NCB\) có :

\(\left\{{}\begin{matrix}AB=CN\\AC=BN\\BC=BC\end{matrix}\right.\) ( cmt )

=> \(\Delta ABC\) = \(\Delta NCB\) ( c - c - c )

c, - Ta có : \(\left\{{}\begin{matrix}\widehat{BAE}=\widehat{EAC}+\widehat{BAC}\\\widehat{DAC}=\widehat{DAB}+\widehat{BAC}\end{matrix}\right.\)

\(\widehat{EAC}=\widehat{DAB}\left(=90^o\right)\)

=> \(\widehat{BAE}=\widehat{DAC}\)

- Xét \(\Delta ABE\)\(\Delta ACD\) có :

\(\left\{{}\begin{matrix}AE=AC\\\widehat{BAE}=\widehat{DAC}\left(cmt\right)\\AB=AD\end{matrix}\right.\)

=> \(\Delta ABE\) = \(\Delta ACD\) ( c - g - c )

=> BE = CD ( cạnh tương ứng )

26 tháng 1 2017

m chưa học trung tuyến

26 tháng 1 2017

câu a theo mk thì bạn nên chứng minh 2 tam giác đồng dạng: tam giác ABM và tam giác MNC

14 tháng 2 2020

bạn vẽ hình ra đi

14 tháng 2 2020

ABCNM

a ) Xét tam giác AMB và tam giác NMC có :

AM = MN ( gt )
Góc AMB = góc NMC ( đối đỉnh )

BM = MC ( vì AM là đường trung tuyến của BC )

=> Tam giác AMB = Tam giác NMC ( c.g.c )

=> Góc ABM = góc NCM ( 2 góc tương ứng )

Mà góc ABM = góc NCM so le trong 

=> CN // AB 

b ) Xét tam giác ABC và tam giác NCB có :

AB = NC ( tam giác AMB = tam giác NMC mà cạnh AB và NC là 2 cạnh tương ứng )

Góc ABC = góc NCB ( vì tam giác AMB = tam giác NMC mà góc ABC và góc NCB là 2 góc tương ứng )

AB là cạnh chung 

=> Tam giác ABC = Tam giác NCB ( c.g.c )

5 tháng 2 2017

A B C M N

a) Xét tam giác AMB và tam giác NMC có:

AM=MN (gt)

Góc AMB=góc NMC (đối đỉnh)

BM=MC(vì AM là đường trung tuyến của BC)

=> Tam giác AMB = tam giác NMC (c.g.c) => góc ABM=góc NCM ( 2 góc tương ứng )

mà góc ABM và góc NCM so le trong => CN//AB

b) Xét tam giác ABC và tam giác NCB có:

AB=NC (\(\Delta AMB=\Delta NMC\) mà cạnh AB và NC là 2 cạnh tương ứng)

Góc ABC = góc NCB ( \(\Delta AMB=\Delta NMC\) mà góc ABC và góc NCB là 2 góc tương ứng)

AB là cạnh chung

=> Tam giác ABC và tam giác NCB (c.g.c)

c) bạn tham khảo câu trả lời của mình ở đây: https://olm.vn/hoi-dap/question/827711.html

30 tháng 12 2017

A B C D E O H M F P Q 1 1 K 1 1

1) Ta có: ^BAC+^BAD=^BAC+^CAE=^BAC=900 => ^DAC=^BAE

Xét \(\Delta\)DAC & \(\Delta\)BAE: AD=AB; ^DAC=^BAE; AC=AE => \(\Delta\)DAC=\(\Delta\)BAE (c.g.c)

=> CD=BE (2 cạnh tương ứng)

Gọi CD giao BE tại P, AB giao CD tại Q

Do \(\Delta\)DAC=\(\Delta\)BAE (cmt) => ^D1=^B1 (2 góc tương ứng)

Xét 2 tam giác: \(\Delta\)DAQ và \(\Delta\)BPQ: ^DQA=^BQP (đối đỉnh), ^D1=^B1

=> ^DAQ=^BPQ => ^BPQ=900 hay CD vuông góc với BE.

2) Trên tia đối của AM lấy điểm F sao cho AF=2AM.

Chứng minh được: \(\Delta\)ABM=\(\Delta\)FCM (c.g.c) => AB=FC. Mà AB=AD => FC=AD

=> ^ABM=^FCM (2 góc tương ứng). Mà 2 góc này so le trong => AB//FC

=> ^BAC+^ACF=1800. (1)

Lại có: ^BAC+^BAD+^CAE+^EAD=3600 => ^EAD+^BAC=3600-^BAD-^CAE=1800 (2)

Từ (1) và (2) => ^ACF=^EAD.

Xét \(\Delta\)ACF & \(\Delta\)EAD: AC=EA; ^ACF=^EAD; CF=AD => \(\Delta\)ACF=\(\Delta\)EAD (c.g.c)

=> AF=DE (2 cạnh tương ứng). Thấy AF=2AM => DE=2AM.

3) Gọi AM cắt DE tại K

Ta có: \(\Delta\)ACF=\(\Delta\)EAD (cmt) => ^A1=^E1.

Mà ^A1+^EAK=900 => ^E1+^EAK=900 => \(\Delta\)EKA vuông tại K hay AM vuông góc với DE.

4) Có: ^ACH+^HAC=900. Mà ^OAE+^HAC=900 => ^ACH=^OAE hay ^ACM=^OAE.

Xét \(\Delta\)AMC & \(\Delta\)EOA có: AC=AE, ^A1=^E1; ^ACM=^OAE => \(\Delta\)AMC=\(\Delta\)EOA (g.c.g)

=> AM=EO (2 cạnh tương ứng).

Lại có: DE=2AM (cmt) => DE=2EO (O\(\in\)DE) hay  là trung điểm của DE (đpcm).

1 tháng 1 2018

Cảm ơn nhé!