Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) D,E lần lượt là điểm chính giữa của cung nhỏ AB, AC
=> \(\hept{\begin{cases}\widebat{AO}=\widebat{BO}\\\widebat{AE}=\widebat{EC}\end{cases}}\)
ta có
\(\widehat{AHK}=\frac{1}{2}\left(\widebat{BO+\widebat{AE}}\right)\)
\(=\frac{1}{2}\left(\widebat{AO}+\widebat{EC}\right)=\widehat{AKH}\)
=> tam giác AHK cân tại A
b) \(\widebat{AD}=\widebat{DB}=>\widehat{AED}=\widehat{BED}\)
\(\widebat{AE=\widebat{EC=>\widehat{ADE}=\widehat{IDE}}}\)
DE cạnh chung
=>\(\Delta ADE=\Delta IDE\left(c-g-c\right)\)
=>\(\hept{\begin{cases}DA=DI\\EA=EI\end{cases}=>DE}\)là đường trung trực của AI
=>\(AI\perp DE\)
c)\(\widehat{EIC}=\frac{1}{2}\left(\widebat{BD}+\widebat{CE}\right)=\frac{1}{2}\left(\widebat{AD}+\widebat{EC}\right)=\widehat{EKC}\)
=> tứ giác EKIC nội tiếp
d) tứ giác EKIC nội tiếp
=>\(\widehat{IKC}=\widehat{BEC}=\widehat{BAC}\)
=>\(IK//AB\)
a) Ta có \(\widehat{AHK}=\dfrac{sđ\stackrel\frown{AE}+sđ\stackrel\frown{BD}}{2}\)
và \(\widehat{AKH}=\dfrac{sđ\stackrel\frown{CE}+sđ\stackrel\frown{AD}}{2}\)
Mặt khác, do D, E lần lượt là điểm chính giữa của cung AB, AC nên \(sđ\stackrel\frown{AD}=sđ\stackrel\frown{BD};sđ\stackrel\frown{AE}=sđ\stackrel\frown{CE}\). Từ đó \(\Rightarrow\widehat{AHK}=\widehat{AKH}\) hay tam giác AHK cân tại A (đpcm).
b) Hiển nhiên I là tâm đường tròn nội tiếp tam giác ABC \(\Rightarrow\) AI là tia phân giác của \(\widehat{BAC}\) (hay chính là \(\widehat{HAK}\)). Mà theo câu a), tam giác AHK cân tại A nên AI đồng thời là đường cao của tam giác AHK \(\Rightarrow AI\perp HK\) hay \(AI\perp DE\) (đpcm)
c) Ta có \(\widehat{CIE}=\dfrac{sđ\stackrel\frown{CE}+sđ\stackrel\frown{BD}}{2}\)
\(=\dfrac{sđ\stackrel\frown{CE}+sđ\stackrel\frown{AD}}{2}\) \(=\widehat{CKE}\) nên tứ giác CEKI nội tiếp
\(\Rightarrow\widehat{HKI}=\widehat{DCE}\) \(=\dfrac{sđ\stackrel\frown{DE}}{2}\)
\(=\dfrac{sđ\stackrel\frown{DA}+sđ\stackrel\frown{AE}}{2}\) \(=\dfrac{sđ\stackrel\frown{BD}+sđ\stackrel\frown{AE}}{2}\) \(=\widehat{AHK}\)
Từ đó dễ dàng suy ra KI//AH hay KI//AB (đpcm)
a) Xét (O) có
\(\widehat{BCD}\) là góc nội tiếp chắn \(\stackrel\frown{BD}\)
\(\widehat{ACD}\) là góc nội tiếp chắn \(\stackrel\frown{AD}\)
\(\stackrel\frown{BD}=\stackrel\frown{AD}\)(D là điểm nằm chính giữa của cung AB)
Do đó: \(\widehat{BCD}=\widehat{ACD}\)(Hệ quả góc nội tiếp)
mà tia CD nằm giữa hai tia CA và CB
nên CD là tia phân giác của \(\widehat{BCA}\)(đpcm)
Bài 2:
Kẻ OH⊥AB tại H và OK⊥CD tại K
Ta có: OH⊥AB(gt)
AB//CD(gt)
Do đó: OH⊥CD(Định lí 2 từ vuông góc tới song song)
mà OK⊥CD(gt)
và OH và OK có điểm chung là O
nên O,H,K thẳng hàng
Xét ΔOAB có OA=OB(=R)
nên ΔOAB cân tại O(Định nghĩa tam giác cân)
Ta có: ΔOAB cân tại O(cmt)
mà OH là đường cao ứng với cạnh đáy AB(gt)
nên OH là đường phân giác ứng với cạnh AB(Định lí tam giác cân)
Suy ra: \(\widehat{AOH}=\widehat{BOH}\)
hay \(\widehat{AOK}=\widehat{BOK}\)
Xét ΔOCD có OC=OD(=R)
nên ΔOCD cân tại O(Định nghĩa tam giác cân)
Ta có: ΔOCD cân tại O(cmt)
mà OK là đường cao ứng với cạnh đáy CD(Gt)
nên OK là đường phân giác ứng với cạnh CD(Định lí tam giác cân)
hay \(\widehat{COK}=\widehat{DOK}\)
Ta có: \(\widehat{AOK}=\widehat{BOK}\)(cmt)
\(\widehat{COK}=\widehat{DOK}\)(cmt)
Do đó: \(\widehat{AOK}-\widehat{COK}=\widehat{BOK}-\widehat{DOK}\)
\(\Leftrightarrow\widehat{AOC}=\widehat{BOD}\)
\(\Leftrightarrow sđ\stackrel\frown{AC}=sđ\stackrel\frown{BD}\)
hay \(\stackrel\frown{AC}=\stackrel\frown{BD}\)(đpcm)