Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề: \(P\)nằm trong \(\Delta\Rightarrow\widehat{APB}>\widehat{ACB}\)
Dựng góc: \(\widehat{ACx}=\widehat{APB}\), kéo dài \(AQ\)cắt \(Cx\)tại \(E\Rightarrow E\)nằm phía ngoài của \(\Delta ABC\)
\(\Rightarrow\Delta CAE~\Delta PAB\)
\(\Rightarrow\frac{CA}{PA}=\frac{CE}{PB}=\frac{AE}{AB};\widehat{PAB}=\widehat{QAC}\)
\(\Rightarrow\widehat{QAB}=\widehat{CAP}\)
\(\Rightarrow\Delta ABE~\Delta APC\)
\(\Rightarrow\frac{AB}{AP}=\frac{AE}{AC}=\frac{BE}{PC};\widehat{AEC}=\widehat{PBA}\)
Từ: \(\widehat{PBA}=\widehat{QBC}\Rightarrow\widehat{AEC}=\widehat{QBC}\Rightarrow QBEC\) nội tiếp.
Theo định lí Ptôlêmê ta có:
\(\Rightarrow BC.QE=QB.CE+QC.BE\Rightarrow BC\left(AE-QA\right)=QB.CE+QC.BE\)
\(\Rightarrow BC.AE=BC.QA+QB.CE+QC.BE\)\((*)\)
Từ các đẳng thức trên ta suy ra: \(CE=\frac{AC.PB}{PA};BE=\frac{AB.PC}{PA};AE=\frac{AC.AB}{PA}\)
Thay vào \((*)\) \(\Rightarrow\frac{PA.QA}{BA.AC}+\frac{PB.QB}{AB.BC}+\frac{PC.QC}{BC.AC}=1\left(đpcm\right)\)
a) Kẻ đường thẳng Ax tiếp xúc với đường tròn (O) tại A.
Khi đó \(\widehat{FAx}=\widehat{ACB}\) (Góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn một cung)
Ta dễ thấy BFEC là tứ giác nội tiếp nên \(\widehat{AFE}=\widehat{ACB}\)
Vậy nên \(\widehat{AFE}=\widehat{FAx}\), chúng lại ở vị trí so le trong nên Ax // EF
Mà \(Ax\perp OA\Rightarrow EF\perp OA\)
Tương tự ta có : \(FD\perp OB;ED\perp OC\)
b) Kẻ đường kính CI. Khi đó ta có ngay IB // AH (Cùng vuông góc BC) ; IA // BH (Cùng vuông góc AC). Vậy nên tứ giác AIBH là hình bình hành và AH = IB.
Xét tam giác IBC có M là trung điểm BC, OC = OB nên OM là đường trung bình. Vậy \(OM=\frac{1}{2}IB\Rightarrow OM=\frac{1}{2}AH\)
Tương tự, gọi N, P lần lượt là trung điểm AB, AC thì \(ON=\frac{1}{2}BH;OP=\frac{1}{2}CH\)
c) Gọi G' là giao điểm của AM và HO.
Ta thấy OM // AH nên áp dụng định lý Ta let ta có:
\(\frac{MG'}{G'A}=\frac{OM}{AH}=\frac{1}{2}\)
Độ ẨM là đường trung tuyến, AG' = G'M nên G' là trọng tâm tam giác ABC hay G' trùng G. Vậy H, G, O thẳng hàng.
d) Gọi giao điểm của OA với PQ là J. Khi đó J là trung điểm QP.
Xét tam giác APQ có AJ là đường cao đồng thời trung tuyến nên nó là tam giác cân.
Vậy thì AP = AQ hay AP2 = AQ2. (1)
Kẻ đường kính AX.
Xét tam giác vuông AQX, đường cao QJ, ta có:
\(AQ^2=AJ.AX\) (2)
Tứ giác BFEC nội tiếp nên \(\widehat{AFJ}=\widehat{ACB}=\widehat{AXB}\)
Suy ra \(\Delta AFJ\sim\Delta AXB\left(g-g\right)\Rightarrow\frac{AF}{AX}=\frac{AJ}{AB}\Rightarrow AJ.AX=AF.AB\)
Ta cũng có \(\Delta AFH\sim\Delta ADB\left(g-g\right)\Rightarrow\frac{AF}{AD}=\frac{AH}{AB}\Rightarrow AD.AH=AF.AB\)
Vậy thì \(AJ.AX=AH.AD\) hay \(AJ.AX=2.OM.AD\) (3)
Từ (1), (2) và (3) suy ra AP2 = AQ2 = 2OM.AD
Qua O kẻ đường thẳng vuông góc với OC cắt AC; BC lần lượt tại M và N
Xét \(\Delta\)CMN có: CO là phân giác đồng thời là đường cao
=> \(\Delta\)CMN cân
=> ^CMN = ^CNM => ^CMO = ^CNO => ^AMO = ^BNO
=> ^MAO + ^AOM = ^NBO + ^BON ( 1)
Xét trong \(\Delta\)BOA ta có: ^ABO + ^BAO = ^AOM + ^BON ( = 180 \(^o\)- ^AOB )
=> ^NBO + ^MAO = ^AOM+ ^BON ( AO ; BO là phân giác ^A; ^B ) (2)
Từ (1)- (2) => ^AOM - ^NBO = ^NBO - ^AOM
=> ^AOM = ^NBO (3)
Từ (3) dễ dàng chứng minh đươc \(\Delta\)AOM ~ \(\Delta\)OBN ~ \(\Delta\)ABO ( g-g ) ( tự chứng minh )
Có: \(\Delta\)AOM ~ \(\Delta\)OBN => \(\frac{AM}{ON}=\frac{OM}{BN}\)=> AM.BN = OM. ON (4)
Có: \(\Delta\)OBN ~ \(\Delta\)ABO => \(\frac{OB}{BN}=\frac{AB}{OB}\)=> OB.OB = AB.BN => \(\frac{OB^2}{AB.BC}=\frac{BN}{BC}\)(5)
Có: \(\Delta\)AOM ~ \(\Delta\)ABO => \(\frac{OA}{AM}=\frac{AB}{OA}\)=> OA.OA =AM.AB => \(\frac{OA^2}{AB.AC}=\frac{AM}{AC}\)(6)
Xét \(\Delta\)cân CMN có: OM = ON ; CM = CN
Xét \(\Delta\)CON vuông tại O => CN\(^2\)= ON\(^2\)+ OC\(^2\)
=> OC \(^2\)= CN\(^2\)- ON\(^2\)= CN.CM - ON.OM = ( BC - BN ) ( AC - AM ) - ON.OM
= BC.AC - BN. AC - BC.AM + BN. AM - ON . OM = BC. AC - BN.AC - BC.AM ( theo 4 => BN. AM - ON . OM = 0)
=> \(\frac{OC^2}{CA.CB}=1-\frac{BN}{BC}-\frac{AM}{AC}\)(7)
Từ (5); (6) (7) => \(\frac{OC^2}{AC.BC}=1-\frac{OA^2}{AB.AC}-\frac{OB^2}{BA.BC}\)
Chuyển vế => Điều phải chứng minh
dùng cái này : \(\sin2\alpha=2sin\alpha.\cos\alpha\)