Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét tứ giác BFEC có \(\widehat{BFC}=\widehat{BEC}=90^0\)
nên BFEC là tứ giác nội tiếp
b: \(\widehat{HEF}=\widehat{QCB}\)
\(\widehat{HPQ}=\widehat{QCB}\)
Do đó: \(\widehat{HEF}=\widehat{HPQ}\)
=>EF//QP
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C H O K
a) Chứng minh \(AB.AC=2R.AH\).Nối đường kính BK là thấy liền.Ta sẽ chứng minh \(\Delta ABK~\Delta HAC\).Đến đây thì Ez rùi
b)Lợi dụng câu a ta có:
\(AB.AC=2R.AH\Rightarrow AB.AC.BC=2RAH.BC=4R.SABC\)hay \(S_{ABc}=\frac{AB.BC.CA}{4R}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ap dung cong thuc \(r=\frac{b+c-a}{2}\) (b=AC,c=AB , cai nay ban tu chung minh nhe)
ta co \(\frac{r}{a}=\frac{b+c-a}{2a}\le\frac{\sqrt{2\left(b^2+c^2\right)}-a}{2a}=\frac{\sqrt{2.a^2}-a}{2a}=\frac{a\sqrt{2}-a}{2a}=\frac{\sqrt{2}-1}{2}\)
Dau = xay ra khi b=c hay tam giac ABC vuong can tai A
![](https://rs.olm.vn/images/avt/0.png?1311)
a. Ta có : \(\frac{S_{AEF}}{S_{ABE}}=\frac{AF}{AB};\frac{S_{AEB}}{S_{ABC}}=\frac{AE}{AC}\)
Như vậy \(\frac{S_{AEF}}{S_{ABC}}=\frac{AF}{AB}.\frac{AE}{AC}=\frac{AE}{AB}.\frac{AF}{AC}=cosA.cosA=cos^2A.\)
Từ đó ta có : \(S_{AEF}=S_{ABC}.cos^2A\)
b. Tương tự phần a ta có : \(S_{BEF}=S_{ABC}.cos^2B\); \(S_{CEF}=S_{ABC}.cos^2C\)
Như vậy \(S_{DEF}=S_{ABC}-S_{AEF}-S_{BEF}-S_{CEF}\)
Từ đó ta có: \(\frac{S_{DEF}}{S_{ABC}}=1-\left(cos^2A+cos^2B+cos^2C\right)\)
Chúc em học tốt :)))
![](https://rs.olm.vn/images/avt/0.png?1311)
Phùng Khánh Linh,Akai Haruma, Hung nguyen, Nguyễn Thanh Hằng Giúp mình với!
cậu ơi! tớ là ng` mới tham gia_cậu cho tớ hỏi cách gõ phân số kiểu j đc k ??
![](https://rs.olm.vn/images/avt/0.png?1311)
O A B C D E F H M G I
a) Kẻ đường thẳng Ax tiếp xúc với đường tròn (O) tại A.
Khi đó \(\widehat{FAx}=\widehat{ACB}\) (Góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn một cung)
Ta dễ thấy BFEC là tứ giác nội tiếp nên \(\widehat{AFE}=\widehat{ACB}\)
Vậy nên \(\widehat{AFE}=\widehat{FAx}\), chúng lại ở vị trí so le trong nên Ax // EF
Mà \(Ax\perp OA\Rightarrow EF\perp OA\)
Tương tự ta có : \(FD\perp OB;ED\perp OC\)
b) Kẻ đường kính CI. Khi đó ta có ngay IB // AH (Cùng vuông góc BC) ; IA // BH (Cùng vuông góc AC). Vậy nên tứ giác AIBH là hình bình hành và AH = IB.
Xét tam giác IBC có M là trung điểm BC, OC = OB nên OM là đường trung bình. Vậy \(OM=\frac{1}{2}IB\Rightarrow OM=\frac{1}{2}AH\)
Tương tự, gọi N, P lần lượt là trung điểm AB, AC thì \(ON=\frac{1}{2}BH;OP=\frac{1}{2}CH\)
c) Gọi G' là giao điểm của AM và HO.
Ta thấy OM // AH nên áp dụng định lý Ta let ta có:
\(\frac{MG'}{G'A}=\frac{OM}{AH}=\frac{1}{2}\)
Độ ẨM là đường trung tuyến, AG' = G'M nên G' là trọng tâm tam giác ABC hay G' trùng G. Vậy H, G, O thẳng hàng.
O A B C D E F H M G J I P Q X
d) Gọi giao điểm của OA với PQ là J. Khi đó J là trung điểm QP.
Xét tam giác APQ có AJ là đường cao đồng thời trung tuyến nên nó là tam giác cân.
Vậy thì AP = AQ hay AP2 = AQ2. (1)
Kẻ đường kính AX.
Xét tam giác vuông AQX, đường cao QJ, ta có:
\(AQ^2=AJ.AX\) (2)
Tứ giác BFEC nội tiếp nên \(\widehat{AFJ}=\widehat{ACB}=\widehat{AXB}\)
Suy ra \(\Delta AFJ\sim\Delta AXB\left(g-g\right)\Rightarrow\frac{AF}{AX}=\frac{AJ}{AB}\Rightarrow AJ.AX=AF.AB\)
Ta cũng có \(\Delta AFH\sim\Delta ADB\left(g-g\right)\Rightarrow\frac{AF}{AD}=\frac{AH}{AB}\Rightarrow AD.AH=AF.AB\)
Vậy thì \(AJ.AX=AH.AD\) hay \(AJ.AX=2.OM.AD\) (3)
Từ (1), (2) và (3) suy ra AP2 = AQ2 = 2OM.AD
A B C D E O H F
a) Tự chứng minh
b) Diện tích của tứ giác có 2 đường chéo vuông góc với nhau là nửa tích 2 đường chéo.
Theo câu a, \(OA⊥EF\)nên \(S_{AEOF}=\frac{1}{2}OA.EF=\frac{1}{2}R.EF\)
tương tự:\(S_{BDOF}=\frac{1}{2}DF.OB=\frac{1}{2}R.DF\);\(S_{DOEC}=\frac{1}{2}.OC.DE=\frac{1}{2}R.DE\)
\(\Rightarrow S_{AEOF}+S_{BDOF}+S_{DOEC}=\frac{1}{2}R.P\)
hay \(S_{ABC}=\frac{1}{2}R.P=\frac{1}{4}.2RP\le\frac{R^2+P^2}{4}\)(Theo BĐT AM-GM)