Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Ta có
IB=IA=IC (Hai tiếp tuyến cùng xp từ 1 điểm thì kc từ điểm đó đến hai tiếp điểm bằng nhau
=> tg IAB và tg IAC cân tại I \(\Rightarrow\widehat{IBA}=\widehat{IAB}\) và \(\widehat{ICA}=\widehat{IAC}\)
Xét tg IAB có \(\widehat{AIB}=180^o-\left(\widehat{IBA}+\widehat{IAB}\right)=180^o-2.\widehat{IAB}\) (1)
Xét tg IAC có \(\widehat{AIC}=180^o-\left(\widehat{IAC}+\widehat{ICA}\right)=180^o-2.\widehat{IAC}\) (2)
Công 2 vế của (1) và (2)
\(\Rightarrow\widehat{AIB}+\widehat{AIC}=360^o-2\left(\widehat{IAB}+\widehat{IAC}\right)\)
\(\Rightarrow\widehat{BIC}=180^o=360^o-2\widehat{BAC}\Rightarrow\widehat{BAC}=90^o\) => tg ABC vuông tại A
2/
Ta có
tg AIB cân tại I (cmt)
\(OI\perp AB\) (Hai tiếp tuyến cùng xp từ 1 điểm thì đường nối điểm đó với tâm đường tròn vuông góc và chia đôi dây cung nối hai tiếp điểm)
=> IO là phân giác của \(\widehat{AIB}\Rightarrow\widehat{AIO}=\widehat{BIO}=\frac{\widehat{AIB}}{2}\) (trong tg cân đường cao xp từ đỉnh đồng thời là đường phân giác)
C/m tương tự ta cũng có \(\widehat{AIO'}=\widehat{CIO'}=\frac{\widehat{AIC}}{2}\)
\(\Rightarrow\widehat{AIO}+\widehat{AIO'}=\widehat{OIO'}=\frac{\widehat{AIB}+\widehat{AIC}}{2}=\frac{180^o}{2}=90^o\) => tg OIO' vuông tại I
3/
Hai đường tròn tiếp xúc ngoài thì đường nối tâm hai đường tròn đi qua điểm tiếp xúc => O, A, O' thẳng hàng
Xét tg vuông OIO' có
\(IA^2=OA.O'A\) (trong tg vuông bình phương đường cao từ đỉnh góc vuông bằng tích giữa 2 hình chiếu của 2 cạnh góc vuông trên cạnh huyền) \(\Rightarrow IA=\sqrt{OA.OA'}=\sqrt{R.R'}\)
Ta có IB=IA=IC (cmt) => \(IA=\frac{BC}{2}\Rightarrow BC=2.IA=2\sqrt{R.R'}\)
Qua O kẻ đường thẳng vuông góc với OC cắt AC; BC lần lượt tại M và N
Xét \(\Delta\)CMN có: CO là phân giác đồng thời là đường cao
=> \(\Delta\)CMN cân
=> ^CMN = ^CNM => ^CMO = ^CNO => ^AMO = ^BNO
=> ^MAO + ^AOM = ^NBO + ^BON ( 1)
Xét trong \(\Delta\)BOA ta có: ^ABO + ^BAO = ^AOM + ^BON ( = 180 \(^o\)- ^AOB )
=> ^NBO + ^MAO = ^AOM+ ^BON ( AO ; BO là phân giác ^A; ^B ) (2)
Từ (1)- (2) => ^AOM - ^NBO = ^NBO - ^AOM
=> ^AOM = ^NBO (3)
Từ (3) dễ dàng chứng minh đươc \(\Delta\)AOM ~ \(\Delta\)OBN ~ \(\Delta\)ABO ( g-g ) ( tự chứng minh )
Có: \(\Delta\)AOM ~ \(\Delta\)OBN => \(\frac{AM}{ON}=\frac{OM}{BN}\)=> AM.BN = OM. ON (4)
Có: \(\Delta\)OBN ~ \(\Delta\)ABO => \(\frac{OB}{BN}=\frac{AB}{OB}\)=> OB.OB = AB.BN => \(\frac{OB^2}{AB.BC}=\frac{BN}{BC}\)(5)
Có: \(\Delta\)AOM ~ \(\Delta\)ABO => \(\frac{OA}{AM}=\frac{AB}{OA}\)=> OA.OA =AM.AB => \(\frac{OA^2}{AB.AC}=\frac{AM}{AC}\)(6)
Xét \(\Delta\)cân CMN có: OM = ON ; CM = CN
Xét \(\Delta\)CON vuông tại O => CN\(^2\)= ON\(^2\)+ OC\(^2\)
=> OC \(^2\)= CN\(^2\)- ON\(^2\)= CN.CM - ON.OM = ( BC - BN ) ( AC - AM ) - ON.OM
= BC.AC - BN. AC - BC.AM + BN. AM - ON . OM = BC. AC - BN.AC - BC.AM ( theo 4 => BN. AM - ON . OM = 0)
=> \(\frac{OC^2}{CA.CB}=1-\frac{BN}{BC}-\frac{AM}{AC}\)(7)
Từ (5); (6) (7) => \(\frac{OC^2}{AC.BC}=1-\frac{OA^2}{AB.AC}-\frac{OB^2}{BA.BC}\)
Chuyển vế => Điều phải chứng minh
Gọi P và Q lần lượt là trung điểm của AC' và CA'.
CC' giao MN tại I
Xét tam giác AC'C. P là trung điểm AC', M là trung điểm của AC
=> PM là đường trung bình tam giác AC'C => PM//CC'
hay C'I//PM
C' là trọng tâm tam giác ABD => C'N=AN/3.(T/c trọng tâm)
Mà P là trung điểm AC' => C' là trung điểm PN.
Xét tam giác PNM: C' là trung điểm PN, C'I//PM => I là trung điểm của MN
=> CC' đi qua trung điểm của MN (1)
Tương tự ta chứng minh được AA' đi qua trung điểm MN (2)
Tương tự xét trong tam giác DMB: BB' và DD' cùng đi qua trung điểm I của MN (3)
Từ (1),(2) và (3) => AA';BB';CC';DD',MN đồng quy (đpcm).
Bạn dựa theo dạng này
Vậy B nằm trên đường trung trực của đoạn thẳngAC (1)
Tương tự ta có AD=CD (gt)
Vậy D nằm trên đường trung trực của AC (2)
Từ (1) và (2) ta suy ra BD là đường trung trực của AC (đpcm)
b,ΔABD=ΔCBD(c.c.c)⇒ˆBAD=ˆBCDΔABD=ΔCBD(c.c.c)⇒BAD^=BCD^
Ta lại có :
ˆBAD+ˆBCD=3600−ˆB−ˆDBAD^+BCD^=3600−B^−D^
=3600−1000−700=1900=3600−1000−700=1900
do đó :ˆA=ˆC=1900:2=950
Vẽ phân giác BD, ta có: \(\frac{DA}{DC}=\frac{BA}{BC}\)
\(\Rightarrow\frac{DA}{AB}=\frac{DC}{BC}=\frac{DA+DC}{AB+BC}=\frac{AC}{AB+BC}\left(1\right)\)
Mặt khác \(\Delta ABD\)vuông tại A, ta có:
\(\tan\widehat{ABD}=\tan\frac{\widehat{ABC}}{2}=\frac{DA}{AB}\left(2\right)\)
Từ (1) và (2) =>đpcm
xét tam giác BDC có góc BDC+ góc C+ góc DBC=180 độ
mà góc CDB+ góc ACB=90 độ
suy ra góc DBC =90 độ
suy ra tam giác DBC vuông tại B có đường cao AB( vì tam giác ABC vuông tại A)
Áp dụng hệ thức lượng vào tam giác DBC ta có:
1/BC^2+1/BD^2=1/AB^2( ĐPCM)
Theo đề: \(P\)nằm trong \(\Delta\Rightarrow\widehat{APB}>\widehat{ACB}\)
Dựng góc: \(\widehat{ACx}=\widehat{APB}\), kéo dài \(AQ\)cắt \(Cx\)tại \(E\Rightarrow E\)nằm phía ngoài của \(\Delta ABC\)
\(\Rightarrow\Delta CAE~\Delta PAB\)
\(\Rightarrow\frac{CA}{PA}=\frac{CE}{PB}=\frac{AE}{AB};\widehat{PAB}=\widehat{QAC}\)
\(\Rightarrow\widehat{QAB}=\widehat{CAP}\)
\(\Rightarrow\Delta ABE~\Delta APC\)
\(\Rightarrow\frac{AB}{AP}=\frac{AE}{AC}=\frac{BE}{PC};\widehat{AEC}=\widehat{PBA}\)
Từ: \(\widehat{PBA}=\widehat{QBC}\Rightarrow\widehat{AEC}=\widehat{QBC}\Rightarrow QBEC\) nội tiếp.
Theo định lí Ptôlêmê ta có:
\(\Rightarrow BC.QE=QB.CE+QC.BE\Rightarrow BC\left(AE-QA\right)=QB.CE+QC.BE\)
\(\Rightarrow BC.AE=BC.QA+QB.CE+QC.BE\)\((*)\)
Từ các đẳng thức trên ta suy ra: \(CE=\frac{AC.PB}{PA};BE=\frac{AB.PC}{PA};AE=\frac{AC.AB}{PA}\)
Thay vào \((*)\) \(\Rightarrow\frac{PA.QA}{BA.AC}+\frac{PB.QB}{AB.BC}+\frac{PC.QC}{BC.AC}=1\left(đpcm\right)\)