Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
a ) + Ta có \(\Delta ABE\) vuông tại E và \(\Delta ACF\) vuông tại F ( vì BE và CF là hai đường cao của\(\Delta\)ABC )
\(\Rightarrow cosBAC=\frac{AE}{AB}=\frac{AF}{AC}\Rightarrow AE.AC=AF.AB\)
+ ) Ta có : \(\Delta ADC\) vuông tại D có DK là đường cao
\(\Rightarrow AD^2=AK.AC\)
Lại có : \(\Delta ADB\) vuông tại D có DI là đường cao
\(\Rightarrow AD^2=AI.AB\)
Suy ra : \(AI.AB=AK.AC\)
b ) Ta có : \(\Delta ADB\) vuông tại D \(\Rightarrow\sin ABC=\frac{AD}{AB}\)
Lại co : \(\Delta CBE\) vuông tại E và \(\Delta AHE\) vuông tại E
Mà \(\widehat{AHE}=\widehat{C}\) ( cùng bù ^DHE ) \(\Rightarrow\sin ABC=\frac{BE}{BC}=\frac{AE}{AH}\)
\(\Rightarrow\frac{\cos BAC}{\sin ABC.\sin ACB}=\frac{AE}{AB}:\left(\frac{AD}{AB}.\frac{AE}{AH}\right)=\frac{AE}{AB}.\frac{AB.AH}{AD.AE}=\frac{AH}{AD}\)
Vậy \(AD.cosBAC=AH.\sin ABC.\sin ACB\left(đpcm\right)\)
\(\frac{1}{\sqrt{5a^2+2ab+2b^2}}=\frac{1}{\sqrt{4\left(a+\frac{b}{2}\right)^2+\left(a-b\right)^2}}\le\frac{1}{\sqrt{4\left(a+\frac{b}{2}\right)^2}}=\frac{1}{2\left(a+\frac{b}{2}\right)}=\frac{1}{2a+b}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}\right)\)
=> \(\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{9}\left(\frac{2}{a}+\frac{1}{b}\right)\)
CM tương tự => \(\frac{1}{\sqrt{5b^2+2bc+2c^2}}\le\frac{1}{9}\left(\frac{2}{b}+\frac{1}{c}\right)\)
\(\frac{1}{\sqrt{5c^2+2ac+2a^2}}\le\frac{1}{9}\left(\frac{2}{c}+\frac{1}{a}\right)\)
Cộng vế với vế => \(\frac{1}{\sqrt{5a^2+2ab+2b^2}}+\frac{1}{\sqrt{5b^2+2bc+2c^2}}+\frac{1}{\sqrt{5c^2+2ac+2c^2}}\le\frac{1}{9}\left(\frac{3}{a}+\frac{3}{b}+\frac{3}{c}\right)=\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{2}{3}\)
Dấu "=" xảy ra <=> \(a=b=c=\frac{3}{2}\)
b: góc HID+góc HKD=180 độ
=>HIDK nội tiếp
=>góc HIK=góc HDK
=>góc HIK=góc HCB
=>góc HIK=góc HEF
=>EF//IK
FH là phân giác góc DFE => HQ=HV
Chứng minh FQ=FV => FH là trung trực QV => FH vuông góc QV => QV song song AB => góc HIQ = HAF
Mà góc HAF = HEF nên góc HIQ = HEF => HEIQ nội tiếp => HIE = 90
Chứng minh tam giác DIS = DIE => IS=IE
1: Xét tứ giác BFEC có
góc BFC=góc BEC=90 độ
=>BFEC là tứ giác nội tiếp
2: ΔADB vuông tại D có DG vuông góc AB
nên AG*AB=AD^2
ΔADC vuông tại D
mà DH là đường cao
nên AH*AC=AD^2=AG*AB
=>AH/AB=AG/AC
=>ΔAHG đồng dạng với ΔABC
=>góc AGH=góc ACB=goc AFE
=>HG//FE
A B C O F H E D I K A' C' B' M N
a) Do BHCK là hình bình hành nên BH // KC \(\Rightarrow KC\perp AC\Rightarrow\widehat{ACK}=90^o\)
KB // CF \(\Rightarrow\widehat{ABK}=90^o\)
Hai tam giác vuông ABK và ACK chung cạnh huyền AK nên A, B, C, K cùng thuộc đường tròn đường kính AK. Vậy K thuộc đường tròn (O).
b) Do BHCK là hình bình hành nên I là trung điểm HK.
AK là đường kính nên \(\widehat{AA'K}=90^o\Rightarrow\) DI // A'K
Vậy DI là đường trung bình tam giác HA'K. Suy ra HD = DA'
Tương tự : HF = FC' ; HE = EB'
Ta có : \(\frac{AA'}{AD}+\frac{BB'}{BE}+\frac{CC'}{CF}=\frac{AD+DA'}{AD}+\frac{BE+EE'}{BE}+\frac{CF+FC'}{CF}\)
\(=1+\frac{DA'}{AD}+1+\frac{EB'}{BE}+1+\frac{FC'}{CF}=3+\left(\frac{DA'}{AD}+\frac{EB'}{BE}+\frac{FC'}{CF}\right)\)
\(=3+\left(\frac{HD}{AD}+\frac{HE}{BE}+\frac{HF}{CF}\right)=3+\left(\frac{S_{BHC}}{S_{ABC}}+\frac{S_{AHC}}{S_{ABC}}+\frac{S_{AHB}}{S_{ABC}}\right)\)
\(=3+\frac{S_{ABC}}{S_{ABC}}=3+1=4\)
Vậy nên \(\frac{AA'}{AD}+\frac{BB'}{BE}+\frac{CC'}{CF}=4\)
c) Ta thấy \(\widehat{AKC}=\widehat{ABC}=\widehat{AHF}\)
Vậy nên \(\Delta AFH\sim\Delta ACK\left(g-g\right)\Rightarrow\frac{AH}{AK}=\frac{AF}{AC}\) (1)
AFH và AEH là các tam giác vuông chung cạnh huyền AH nên AFHE là tứ giác nội tiếp.
Vậy thì \(\widehat{AFM}=\widehat{AHE}=\widehat{ACN}\)
Lại có \(\Delta AFH\sim\Delta ACK\Rightarrow\widehat{FAM}=\widehat{CAN}\)
Nên \(\Delta AFM\sim\Delta ACN\left(g-g\right)\Rightarrow\frac{AF}{AC}=\frac{AM}{AN}\) (2)
Từ (1) và (2) suy ra \(\frac{AH}{AK}=\frac{AM}{AN}\Rightarrow\frac{AH}{AM}=\frac{AK}{AN}\Rightarrow\) MN // HK (Định lý Talet đảo)
a) +) Ta có \(\Delta ABE\) vuông tại E và \(\Delta ACF\) vuông tại F ( vì BE và CF là hai đường cao của ∆ABC)
\(\Rightarrow cosBAC=\frac{AE}{AB}=\frac{AF}{AC}\Rightarrow AE.AC=AF.AB\)
+) \(\Delta ADC\) vuông tại D có DK là đường cao \(\Rightarrow\)AD2 = AK.AC
Lại có \(\Delta ADB\) vuông tại D có DI là đường cao \(\Rightarrow\) AD2 = AI.AB
Suy ra: AI.AB = AK. AC
b) Ta có \(\Delta ADB\) vuông tại D \(\Rightarrow sinABC=\frac{AD}{AB}\)
Lại có \(\Delta CBE\) vuông tại E và \(\Delta AHE\) vuông tại E
mà \(\widehat{AHE}=\widehat{C}\)( cùng bù \(\widehat{DHE}\)) \(\Rightarrow sinABC=\frac{BE}{BC}=\frac{AE}{AH}\)
\(\Rightarrow\frac{cosBAC}{sinABC.sinACB}=\frac{AE}{AB}:\left(\frac{AD}{AB}.\frac{AE}{AH}\right)=\frac{AE}{AB}.\frac{AB.AH}{AD.AE}=\frac{AH}{AD}\)
Vậy\(AD.cosBAC=AH.sinABC.sinACB\left(đpcm\right)\)