K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét tứ giác BFEC có

góc BFC=góc BEC=90 độ

=>BFEC là tứ giác nội tiếp

2: ΔADB vuông tại D có DG vuông góc AB

nên AG*AB=AD^2

ΔADC vuông tại D

mà DH là đường cao

nên AH*AC=AD^2=AG*AB

=>AH/AB=AG/AC
=>ΔAHG đồng dạng với ΔABC

=>góc AGH=góc ACB=goc AFE

=>HG//FE

1: Xét tứ giác BCEF có góc BFC=góc BEC=90 độ

nên BCEF là tứ giác nội tiếp

2: AG*AB=AD^2

AH*AC=AD^2

=>AG*AB=AH*AC

=>AG/AC=AH/AB

=>ΔAGH đồng dạng với ΔACB

=>góc AGH=góc ACB=góc AFE

=>FE//GH

13 tháng 6 2016
 
Ta có hình vẽ như sau:

Xét tứ giác CEHD ta có:

Góc CEH = 900 (Vì BE là đường cao)

Góc CDH = 900 (Vì AD là đường cao)

=> góc CEH + góc CDH = 1800

Mà góc CEH và góc CDH là hai góc đối của tứ giác CEHD. Do đó CEHD là tứ giác nội tiếp.

12 tháng 3 2022

 

a) theo gt, BFC=BEC=90

=> BFEC nội tiếp (có 2 góc kề bang nhau)

góc AFC=ADC=90 => AFDC nội tiếp ( có 2 cạnh kề cùng nhìn một đoan thẳng bằng nhau) 

b) vì tứ giác ABA'C nội tiếp => ABC = AA'C (cùng chắn cung AC)

Lại có ABC= AHF (Cùng phụ với góc BAD)

Ta thấy AFHE nội tiếp vì AFH +AEH = 90+90=180

=> AHF=AEF (Cùng chắn cung AF)

=>Đpcm

c) vì tứ giác EQA'C nôi tiếp

nên EQA'+ECA'=180 mà ECA'=90 vì là góc nội tiếp chắn nửa đường tròn

=> MQP=EQA'=90 ( vì MQP+EQA=180)

Trong đó ADC=90 =>Đpcm

d) Vì ABA'C VÀ FBDH nội tiếp nên góc NA'C=ABC=DHC

=>NA'C=DHC=>Đpcm

20 tháng 4 2016

FH là phân giác góc DFE => HQ=HV

Chứng minh FQ=FV => FH là trung trực QV => FH vuông góc QV => QV song song AB => góc HIQ = HAF

Mà góc HAF = HEF nên góc HIQ = HEF => HEIQ nội tiếp => HIE = 90

Chứng minh tam giác DIS = DIE => IS=IE