K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có

góc HAB=góc HCA

Do đó: ΔAHB\(\sim\)ΔCHA

Suy ra: HA/HC=HB/HA

hay \(HA^2=HB\cdot HC\)

b: \(AH=\sqrt{1.8\cdot3.2}=2.4\left(cm\right)\)

=>DE=2,4(cm)

c: Xét ΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

Tớ thấy thiếu thiếu gì đó Kiểm tra lại đề đi !!?

9 tháng 5 2022

a. xét tam giác AHB và tam giác CAB có:

góc H= góc A= 90o

góc B chung

=> tam giác AHB~tam giác CAB (g.g) (1)

xét tam giác CHA và tam giác CAB có:

góc H=góc A=90o

góc C chung

=> tam giác CHA~tam giác CAB (g.g) (2)

từ (1) và (2) => tam giác AHB~tam giác CHA

=> \(\dfrac{AH}{CH}\)=\(\dfrac{BH}{AH}\)

=> AH2=BH.CH

7 tháng 6 2021

B A C E M H D

a, Xét \(\Delta ABC\left(\perp A\right)\) và \(\Delta HBA\left(\perp H\right)\) có \(\widehat{B}\) chung

b,\(\Delta ABC\sim\Delta HBA\) theo a

\(\Rightarrow\dfrac{AB}{HB}=\dfrac{BC}{AB}\Leftrightarrow AB^2=HB.BC\)

                                     \(=4.\left(4+9\right)\)

\(\Rightarrow AB=2\sqrt{13}\) (cm)

Áp dụng định lí py-ta-go trong \(\Delta ABH\):

\(AH=\sqrt{AB^2-BH^2}=6\left(cm\right)\)

Vì \(AH=DE=6cm\)

c, Xét \(\Delta HBA\left(\perp H\right)\) và \(\Delta DHA\left(\perp D\right)\) có \(\widehat{A}\) chung

\(\Rightarrow\Delta HBA\sim\Delta DHA\left(g.g\right)\)

\(\Rightarrow\dfrac{AD}{AH}=\dfrac{AH}{AB}\Rightarrow AD.AB=AH^2\) \(\left(1\right)\)

Tương tự \(\Delta EHA\sim\Delta HCA\left(g.g\right)\)

\(\Rightarrow\dfrac{AE}{AH}=\dfrac{AH}{AC}\Rightarrow AE.AC=AH^2\) \(\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow AD.AB=AE.AC\)

-Chúc bạn học tốt-

7 tháng 6 2021

Kí hiệu: \(\sim\) này là đồng dạng nha

28 tháng 2 2018

a) Xét tam giác AHD và tam giác ABH có:

Góc A chung

\(\widehat{ADH}=\widehat{AHB}\left(=90^o\right)\)

\(\Rightarrow\Delta AHD\sim\Delta ABH\left(g-g\right)\)

\(\Rightarrow\frac{AH}{AB}=\frac{AD}{AH}\Rightarrow AH^2=AB.AD\)

b) Ta có tứ giác ADHE có 3 góc vuông nên nó là hình chữ nhật.

Vậy thì \(\widehat{DHA}=\widehat{DEA}\) 

Lại có \(\widehat{DHA}=\widehat{CBA}\) nên \(\widehat{DEA}=\widehat{CBA}\)

Suy ra \(\Delta ADE\sim\Delta ACB\left(g-g\right)\)

c) Gọi I là giao điểm của AO và DE.

Xét tam giác vuông ABC có AO là trung tuyến ứng với cạnh huyền nên OA = OC  hay \(\widehat{OAC}=\widehat{OCA}\)

Lại có  \(\widehat{AED}=\widehat{ABC}\)  nên \(\widehat{OAC}+\widehat{DEA}=\widehat{OCA}+\widehat{ABC}=90^o\)

Suy ra \(\widehat{AIE}=90^o\) hay \(AO\perp DE\)

d) Ta có do \(AO\perp DE\) nên:

\(S_{ADOE}=\frac{1}{2}DE.OA=\frac{1}{2}AH.\frac{BC}{2}=\frac{1}{2}a.AH\)

Vậy thì \(S_{ADOE}\) lớn nhất khi AH lớn nhất.

Xét tam giác vuông ABC, ta có

 \(BC.AH=AB.AC\le\frac{AB^2+AC^2}{2}=\frac{BC^2}{2}=2a^2\)

\(\Rightarrow AH\le a\)

Vậy AH lớn nhất khi AH = a tức là tam giác ABC vuông cân tại A.

7 tháng 3 2021

khó vãi

7 tháng 3 2021

A C H D E M N B O K

a: Xét ΔABH và ΔCAH có

góc ABH=góc CAH

góc AHB=góc CHA

=>ΔABH đồng dạng với ΔCAH

b: ΔAHB vuông tại H có HD là đường cao

nên AD*AB=AH^2

ΔACH vuông tại H có HE là đường cao

nên AE*AC=AH^2=AD*AB

a: \(BC=\sqrt{21^2+28^2}=35\left(cm\right)\)

BD là phân giác

=>BD/AB=CD/AC
=>BD/3=CD/4=35/7=5

=>DB=15cm; DC=20cm

b: AH=21*28/35=16,8cm

c: Xet ΔAHB vuông tại H và ΔCHA vuông tại H có

góc HAB=góc HCA

=>ΔAHB đồng dạng với ΔCHA