Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét \(\Delta ABC\left(\perp A\right)\) và \(\Delta HBA\left(\perp H\right)\) có \(\widehat{B}\) chung
b,\(\Delta ABC\sim\Delta HBA\) theo a
\(\Rightarrow\dfrac{AB}{HB}=\dfrac{BC}{AB}\Leftrightarrow AB^2=HB.BC\)
\(=4.\left(4+9\right)\)
\(\Rightarrow AB=2\sqrt{13}\) (cm)
Áp dụng định lí py-ta-go trong \(\Delta ABH\):
\(AH=\sqrt{AB^2-BH^2}=6\left(cm\right)\)
Vì \(AH=DE=6cm\)
c, Xét \(\Delta HBA\left(\perp H\right)\) và \(\Delta DHA\left(\perp D\right)\) có \(\widehat{A}\) chung
\(\Rightarrow\Delta HBA\sim\Delta DHA\left(g.g\right)\)
\(\Rightarrow\dfrac{AD}{AH}=\dfrac{AH}{AB}\Rightarrow AD.AB=AH^2\) \(\left(1\right)\)
Tương tự \(\Delta EHA\sim\Delta HCA\left(g.g\right)\)
\(\Rightarrow\dfrac{AE}{AH}=\dfrac{AH}{AC}\Rightarrow AE.AC=AH^2\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow AD.AB=AE.AC\)
-Chúc bạn học tốt-
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABC}\) chung
Do đó: ΔABC\(\sim\)ΔHBA
b: XétΔABC vuông tại A có AH là đường cao
nên \(AH^2=BH\cdot CH\)
c: Vì \(AH^2=BH\cdot CH=4\cdot16=64\left(cm\right)\)
nên AH=8cm
Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
Do đó: ADHE là hình chữ nhật
Suy ra: AH=DE=8(cm)
a, Xét tam giác ABC và tam giác HBA ta có :
^BAC = ^BHA = 900
^B _ chung
Vậy tam giác ABC ~ tam giác HBA ( g.g )
b, Xét tam giác ABH và tam giác CAH ta có :
^AHB = ^CHA = 900
^ABH = ^CAH ( cùng phụ ^BAC )
Vậy tam giác ABH~ tam giác CAH (g.g )
=> AH/CH=BH/AH => AH^2 = CH.BH
c, Ta có : AH = 2 . 4 = 8 cm
Xét tứ giác ADHE có :
^A = ^ADH = ^AEH = 900
Vậy tứ giác ADHE là hcn
=> AH = DE = 8 cm
d, Ta có : \(\dfrac{S_{AMH}}{S_{ABC}}=\left(\dfrac{AH}{AC}\right)^2\)
Xét tam giác AHC và tam giác ABC
^AHC = ^BAC = 900
^HAC = ^B ( cùng phụ ^BAM )
Vậy tam giác AHC ~ tam giác BAC ( g.g)
=> AC / BC = HC/AC => AC^2 = HC ( HB + HC )
=> AC = 4 . 5 = 20 cm
Thay vào ta được : \(\left(\dfrac{AH}{AC}\right)^2=\left(\dfrac{8}{20}\right)^2=\dfrac{64}{400}=\dfrac{4}{25}\)
a: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
góc HAB=góc HCA
Do đó: ΔAHB\(\sim\)ΔCHA
Suy ra: HA/HC=HB/HA
hay \(HA^2=HB\cdot HC\)
b: \(AH=\sqrt{1.8\cdot3.2}=2.4\left(cm\right)\)
=>DE=2,4(cm)
c: Xét ΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
=>góc HAB=góc ACB
b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có
góc HAB=góc HCA
=>ΔHAB đồng dạng với ΔHCA
=>HA/HC=HB/HA
=>HA^2=HB*HC
c: BC=căn 15^2+20^2=25cm
BD là phân giác
=>AD/AB=CD/BC
=>AD/3=CD/5=(AD+CD)/(3+5)=20/8=2,5
=>AD=7,5cm
BD=căn 15^2+7,5^2=15/2*căn 5(cm)
a. xét tam giác AHB và tam giác CAB có:
góc H= góc A= 90o
góc B chung
=> tam giác AHB~tam giác CAB (g.g) (1)
xét tam giác CHA và tam giác CAB có:
góc H=góc A=90o
góc C chung
=> tam giác CHA~tam giác CAB (g.g) (2)
từ (1) và (2) => tam giác AHB~tam giác CHA
=> \(\dfrac{AH}{CH}\)=\(\dfrac{BH}{AH}\)
=> AH2=BH.CH