K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2022

a. xét tam giác AHB và tam giác CAB có:

góc H= góc A= 90o

góc B chung

=> tam giác AHB~tam giác CAB (g.g) (1)

xét tam giác CHA và tam giác CAB có:

góc H=góc A=90o

góc C chung

=> tam giác CHA~tam giác CAB (g.g) (2)

từ (1) và (2) => tam giác AHB~tam giác CHA

=> \(\dfrac{AH}{CH}\)=\(\dfrac{BH}{AH}\)

=> AH2=BH.CH

Tớ thấy thiếu thiếu gì đó Kiểm tra lại đề đi !!?

7 tháng 6 2021

B A C E M H D

a, Xét \(\Delta ABC\left(\perp A\right)\) và \(\Delta HBA\left(\perp H\right)\) có \(\widehat{B}\) chung

b,\(\Delta ABC\sim\Delta HBA\) theo a

\(\Rightarrow\dfrac{AB}{HB}=\dfrac{BC}{AB}\Leftrightarrow AB^2=HB.BC\)

                                     \(=4.\left(4+9\right)\)

\(\Rightarrow AB=2\sqrt{13}\) (cm)

Áp dụng định lí py-ta-go trong \(\Delta ABH\):

\(AH=\sqrt{AB^2-BH^2}=6\left(cm\right)\)

Vì \(AH=DE=6cm\)

c, Xét \(\Delta HBA\left(\perp H\right)\) và \(\Delta DHA\left(\perp D\right)\) có \(\widehat{A}\) chung

\(\Rightarrow\Delta HBA\sim\Delta DHA\left(g.g\right)\)

\(\Rightarrow\dfrac{AD}{AH}=\dfrac{AH}{AB}\Rightarrow AD.AB=AH^2\) \(\left(1\right)\)

Tương tự \(\Delta EHA\sim\Delta HCA\left(g.g\right)\)

\(\Rightarrow\dfrac{AE}{AH}=\dfrac{AH}{AC}\Rightarrow AE.AC=AH^2\) \(\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow AD.AB=AE.AC\)

-Chúc bạn học tốt-

7 tháng 6 2021

Kí hiệu: \(\sim\) này là đồng dạng nha

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{ABC}\) chung

Do đó: ΔABC\(\sim\)ΔHBA

b: XétΔABC vuông tại A có AH là đường cao

nên \(AH^2=BH\cdot CH\)

c: Vì \(AH^2=BH\cdot CH=4\cdot16=64\left(cm\right)\)

nên AH=8cm

Xét tứ giác ADHE có 

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

Do đó: ADHE là hình chữ nhật

Suy ra: AH=DE=8(cm)

27 tháng 1 2022

a, Xét tam giác ABC và tam giác HBA ta có : 

^BAC = ^BHA = 900

^B _ chung 

Vậy tam giác ABC ~ tam giác HBA ( g.g ) 

b, Xét tam giác ABH và tam giác CAH ta có : 

^AHB = ^CHA = 900

^ABH = ^CAH ( cùng phụ ^BAC ) 

Vậy tam giác ABH~ tam giác CAH (g.g )

=> AH/CH=BH/AH => AH^2 = CH.BH 

c, Ta có : AH = 2 . 4 = 8 cm 

Xét tứ giác ADHE có : 

^A = ^ADH = ^AEH = 900 

Vậy tứ giác ADHE là hcn 

=> AH = DE = 8 cm 

d, Ta có : \(\dfrac{S_{AMH}}{S_{ABC}}=\left(\dfrac{AH}{AC}\right)^2\)

Xét tam giác AHC và tam giác ABC 

^AHC = ^BAC = 900

^HAC = ^B ( cùng phụ ^BAM ) 

Vậy tam giác AHC ~ tam giác BAC ( g.g)

=> AC / BC = HC/AC => AC^2 = HC ( HB + HC ) 

=> AC = 4 . 5 = 20 cm 

Thay vào ta được : \(\left(\dfrac{AH}{AC}\right)^2=\left(\dfrac{8}{20}\right)^2=\dfrac{64}{400}=\dfrac{4}{25}\)

a: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có

góc HAB=góc HCA

Do đó: ΔAHB\(\sim\)ΔCHA

Suy ra: HA/HC=HB/HA

hay \(HA^2=HB\cdot HC\)

b: \(AH=\sqrt{1.8\cdot3.2}=2.4\left(cm\right)\)

=>DE=2,4(cm)

c: Xét ΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

=>góc HAB=góc ACB

b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có

góc HAB=góc HCA

=>ΔHAB đồng dạng với ΔHCA

=>HA/HC=HB/HA

=>HA^2=HB*HC

c: BC=căn 15^2+20^2=25cm

BD là phân giác

=>AD/AB=CD/BC

=>AD/3=CD/5=(AD+CD)/(3+5)=20/8=2,5

=>AD=7,5cm

BD=căn 15^2+7,5^2=15/2*căn 5(cm)