Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
a) \(\Delta ABC\)có \(AD\) là phân giác \(\widehat{BAC}\)
\(\Rightarrow\)\(\frac{BD}{AB}=\frac{DC}{AC}\) (tính chất đường phân giác trong tam giác)
hay \(\frac{BD}{8}=\frac{DC}{10}=\frac{BD+DC}{8+10}=\frac{9}{18}=\frac{1}{2}\)
suy ra: \(BD=\frac{8}{2}=4\)
\(DC=\frac{10}{2}=5\)
Bài 1:
Vì AD // BC => Góc A cộng góc B bằng 180 độ. Mà góc A trừ góc B bằng 20 độ.
=> Góc A = (180 + 20) : 2 = 100 độ
Góc B = 80 độ.
Vì AD // BC => Góc C cộng góc D bằng 180 độ .
Mà góc D bằng hai lần góc C => 3C = 180 độ
=> Góc C bằng 60 độ. Góc D bằng 120 độ.
a: Xét ΔDAM có DA=DM
nên ΔDAM cân tại D
Suy ra: \(\widehat{DAM}=\widehat{DMA}\)
mà \(\widehat{DMA}=\widehat{MAB}\)
nên \(\widehat{DAM}=\widehat{BAM}\)
hay AM là tia phân giác của \(\widehat{BAD}\)
a,{ˆA1=ˆA2(t/c.phân.giác)ˆA2=ˆK1(so.le.trong.do.AB//CD)
⇒ˆA1=ˆK1⇒ΔADK.cân.tại.D⇒AD=KD
b,{AD+BC=CDAD=DK⇒DK+BC=CD
Mà DK+KC=CD⇒KC=BC
⇒ΔBKC.cân.tại.C
c,ΔBKC.cân.tại.C⇒ˆK2=ˆB2Mà.ˆK2=ˆB1(so.le.trong.vì.AB//CK)
⇒ˆB2=ˆB1
⇒BK.là.phân.giác.ˆAB
Theo tính chất tia phân giác của góc ta có:
Do tam giác ABC cân tại A nên AB = AC nên:
Suy ra : DB = DC.
Mà DB + DC = BC nên:
Chọn đáp án C