Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a/
Xét ∆AEC và ∆ACF, có:
Góc A là góc chung
Góc E = góc C = 90o
=>∆AEC đồng dạng ∆ACF (góc-góc)
=>\(\dfrac{AC}{AF}=\dfrac{AE}{AC}\) (Cặp cạnh tương ứng tỉ lệ)
=> AC2=AE.AF
Câu b/
Xét hai tam giác vuông: ∆EBC và ∆DCB, có:
Cạnh BC là cạnh chung
Góc EBC = góc DCB (vì ABC là tam giác cân)
=> ∆EBC = ∆DCB (cạnh huyền - góc nhọc)
=> Góc C1 = góc B1 (góc tương ứng) (1)
Mà ta có BD vuông góc AC, CF vuông góc AC => BD // CF
=> Góc B1 = góc C2 (so le trong) (2)
Từ (1) và (2) => Góc C1 = góc C2 => CB là tia phân giác góc ECF
=> \(\dfrac{CE}{CF}=\dfrac{BE}{BF}\)(tính chất đường phân giác) (điều phải chứng minh)
a: Ta có: EG\(\perp\)AC
BD\(\perp\)AC
Do đó: EG//BD
Xét ΔABD có EG//BD
nên \(\dfrac{AE}{AB}=\dfrac{AG}{AD}\)
=>\(AE\cdot AD=AB\cdot AG\)(1)
Ta có: DF\(\perp\)AB
CE\(\perp\)AB
Do đó: DF//CE
Xét ΔAEC có DF//CE
nên \(\dfrac{AD}{AC}=\dfrac{AF}{AE}\)
=>\(AD\cdot AE=AC\cdot AF\)(2)
Từ (1) và (2) suy ra \(AE\cdot AD=AB\cdot AG=AC\cdot AF\)
b: AB*AG=AC*AF
=>\(\dfrac{AG}{AC}=\dfrac{AF}{AB}\)
Xét ΔABC có \(\dfrac{AG}{AC}=\dfrac{AF}{AB}\)
nên FG//BC
a) \(\Delta\)AGE và \(\Delta\)ADB vuông có ^A chung nên \(\Delta AGE~\Delta ADB\)
\(\Rightarrow\frac{AG}{AD}=\frac{AE}{AB}\Rightarrow AG.AB=AD.AE\)(1)
\(\Delta\)AFD và \(\Delta\)AEC vuông có ^A chung nên\(\Delta AFD~\Delta AEC\)
\(\Rightarrow\frac{AF}{AE}=\frac{AD}{AC}\Rightarrow AF.AC=AE.AD\)(2)
Từ (1) và (2) suy ra AD.AE = AB.AG = AC.AF (đpcm)
b) Ta đã chứng minh AB.AG = AC.AF (câu a)
\(\Rightarrow\frac{AG}{AC}=\frac{AF}{AB}\)
\(\Rightarrow FG//BC\)(Theo định lý Thales đảo)
Vậy FG // BC (đpcm)
Theo giả thiết ta có AD=DF=FB.
Có nghĩa là: D là trung điểm của AF, F là trung điểm của DB
Xét tam giác AFG, ta có:
- D là trung điểm của AF
- Mà DE // FG
\(\Rightarrow\)DE là đường trung bình, Vậy E là trung điểm
Xét hình thangDECB, ta có:
- F là trung điểm của DB
- FG // BC
=> G là trung điểm
=> GE =GC
Mà EG=GA (cmt)
=> GE=GC=GA
Tam giác AFG có DE là đường trung bình
=>DE=\(\frac{1}{2}\)FG
Ta có FG là đường trung bình cua hình thang DECB
=>FG = \(\frac{DE+BC}{2}\)
Ta phải chứng minh DE+FG=BC
\(\frac{1}{2}\)FG + \(\frac{DE+BC}{2}\) = BC
\(\frac{1}{2}\)(FG+DE+BC)=BC
FG+DE+BC= 2BC
FG+DE = 2BC - BC
FG+DE = BC
b) ta có FG= \(\frac{DE+BC}{2}\)
2FG= \(\frac{1}{2}\)FG +9
2FG - \(\frac{1}{2}\)FG = 9
\(\frac{3}{2}\)FG =9
=> FG=9:\(\frac{3}{2}\)
FG=6cm
mà FG=2DE
=>DE= \(\frac{FG}{2}\)=\(\frac{6}{2}\)=3cm