K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2015

Thái Thùy Dung bn vào câu hỏi tương tự họ giải chi tiết nhá. Nhớ ****. Mk tl sớm nhất royy

21 tháng 2 2015

a)nhân S với 32 ta dc:

9S=3^2+3^4+...+3^2002+3^2004

=>9S-S=(3^2+3^4+...+3^2004)-(3^0+3^4+...+2^2002)

=>8S=32004-1

=>S=32004-1/8

b) ta có S là số nguyên nên phải chứng minh 32004-1 chia hết cho 7

ta có:32004-1=(36)334-1=(36-1).M=7.104.M

=>32004 chia hết cho 7. Mặt khác ƯCLN(7;8)=1 nên S chia hết cho 7

 

29 tháng 4 2016

S chia het cho 7

30 tháng 6 2015

b) S=(30+32+34)+...+(31998+32000+32002)

S= 91+...+31998(1+32+34)

S=91+...+31998.91

S=91(1+36+...+31998)

S=13.7.(1+36+...+31998) chia hết cho 7

4 tháng 4 2017

Mình chịu

Bó tay 

SORRY

~~~ Hello ~~~

10 tháng 2 2016

a ) Nhân 9 vào 3 vế của S , ta được :

9S = 32 ( 30 + 32 + 34 + .... + 32002 )

=> 9S = 32 + 34 + 36 + .... + 32004

Lấy biểu thức 9S - S , ta được :

9S - S = ( 32 + 34 + 36 + .... + 32004 ) - ( 30 + 32 + 34 + .... + 32002 )

=> 8S = 32004 - 1

=> S = ( 32004 - 1 ) : 8

ý b tự làm !

10 tháng 2 2016

ai thương mình cho hết âm ai thì sẽ may mắn hết năm

15 tháng 12 2016

 

a, \(S=3^0+3^2+3^4+3^6+...+3^{2002}\)

\(\Rightarrow9S=3^2+3^4+3^6+3^8+...+3^{2004}\)

\(\Rightarrow9S-S=\left(3^2+3^4+3^6+3^8+...+3^{2004}\right)-\left(3^0+3^2+3^4+3^6+...+3^{2002}\right)\)

\(\Rightarrow8S=3^{2004}-1\Rightarrow S=\frac{3^{2004}-1}{8}\)

b, Xét dãy số mũ : 0;2;4;6;...;2002

Số số hạng của dãy số trên là :

( 2002 - 0 ) : 2 + 1 = 1002 ( số )

Ta ghép được số nhóm là :

1002 : 3 = 334 ( nhóm )

Ta có : \(S=\left(3^0+3^2+3^4\right)+\left(3^6+3^8+3^{10}\right)+...+\left(3^{1998}+3^{2000}+3^{2002}\right)\)

\(S=\left(3^0+3^2+3^4\right)+3^6\left(3^0+3^2+3^4\right)+...+3^{1998}\left(3^0+3^2+3^4\right)\)

\(S=1.91+3^6.91+...+3^{1998}.91=\left(1+3^6+...+3^{1998}\right).91\)

Vì : \(91⋮7;1+3^6+...+3^{1998}\in N\Rightarrow S⋮7\) (đpcm)

16 tháng 12 2016

CẢM ƠN

 

17 tháng 1 2016

\(S=3^0+3^2+3^4+3^6+...+3^{2002}\)

\(\Rightarrow3^2S=3^2+3^4+3^6+3^8+...+3^{2002}+3^{2004}\)

\(\Rightarrow9S-S=\left(3^2+3^4+3^6+3^8+...+3^{2002}+3^{2004}\right)-\left(3^0+3^2+3^4+3^6+...3^{2000}+3^{2002}\right)\)

\(\Rightarrow8S=3^{2004}-3^0=3^{2004}-1\)

\(\Rightarrow S=\frac{3^{2004}-1}{8}\)

 

13 tháng 4 2015

b) S=(30+32+34)+...+(31998+32000+32002)

S= 91+...+31998(1+32+34)

S=91+...+31998.91

S=91(1+36+...+31998)

S=13.7.(1+36+...+31998) chia hết cho 7

       

 

14 tháng 3 2020

a) S=30+32+34+...+32002

\(\Rightarrow\)9S=32+34+36+...+32004

\(\Rightarrow\)9S-S=(32+34+36+...+32004)-(1+32+34+...+32002)

8S=32004-1

\(\Rightarrow S=\frac{3^{2004}-1}{8}\)

b) Ta có : S=1+32+34+...+32002

=(1+32+34)+(36+38+310)+...+(31998+32000+32002)

=1(1+32+34)+36(1+32+34)+...+31998(1+32+34)

=1.91+36.91+...+31998.91

Mà 91\(⋮\)7 nên 1.91+36.91+...+31998.91\(⋮\)7

\(\Rightarrow S⋮7\)(đpcm)

a) S=30+32+34+36+.....+32002

=>32S=32+34+36+.....+32002+32004

=>9S-S=(32+34+36+.....+32002+32004)-(30+32+34+36+.....+32002)

=>8S=32004 - 1

=>S=(32004 - 1) / 8

b) S= 30+32+34+36+.....+32002

S=(30+32+34)+(36+38+310)+.....+(31998+32000+32002)

S=91+36(30+32+34)+.....+31998(30+32+34)

S=91.1+36.91+....+31998.91

S=91(1+36+....+31998) chia  hết cho 7

=>S chia hết cho 7

  Câu a mk ko chắc làm đúng ko nữa

3S=3+3^2+........+3^2003

Xong rồi lấy 3S-S rút gọn đi!!!!!!

Cậu tự giải nha mk giải dài dòng lắm

19 tháng 1 2018

a,

Nhân S với 3^2 ta được 9S=3^2+3^4+....+3^2002+3^2004
=>9S-S=(3^2+3^4+....+3^2004)-(3^0+3^2+....+3^2002)
=>8S=3^2004-1
=>S=(3^2004-1)/8
b,

ta có S là sô nguyên nên fải c­­­hung minh 3^2004-1chia hết cho 7
ta có : 3^2004-1=(3^6)^334-1=(3^6-1).M=728.M=7.104.M
=>3^2004 chia hết cho 7. Mặt khác (7;8)=1 nên S chia hết cho 7