K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2018

 a ) S = 2+22 + 2+...+ 22014     

    4S = 2+ 24 + 26 + ... + 22016

Mà S =  ( 4S- S ) : 3 

=>  S = [ ( 22 + 24  + 26 +...+ 22016 ) - ( 20 + 2+ 2+...+ 22014 ) ] : 3

          = [ 22016 - 20  ]   : 3

          = \(\frac{2^{2016}-1}{3}\)    

b) S = 20 + 2+ 24 + ... + 22014

       = ( 2+ 2+ 2) + ( 25 + 2+ 27 ) + ...+ ( 22010 + 22012 + 22014 )

       =    21   +  25 x ( 20 + 22 + 24 ) +... + 22010 x  ( 20 + 22 + 24 )

       =   21 +  2x 21   + ... + 22010 x 21

       = 21 x  ( 1 + 25 + ... + 22010 )

=> S \(⋮\)21    (đpcm)

               

9 tháng 10 2017

a/ Ta có :

\(S=1+3+3^2+........+3^{2017}\)

\(\Leftrightarrow S=\left(1+3\right)+\left(3^2+3^3\right)+......+\left(3^{2016}+3^{2017}\right)\)

\(\Leftrightarrow S=1\left(1+3\right)+3^2\left(1+3\right)+......+3^{2016}\left(1+3\right)\)

\(\Leftrightarrow S=1.4+3^2.4+........+3^{2016}.4\)

\(\Leftrightarrow S=4\left(1+3^2+......+3^{2016}\right)⋮4\left(đpcm\right)\)

b/ \(S=1+3+..........+3^{2017}\)

\(\Leftrightarrow3S=3+3^2+.........+3^{2017}+3^{2018}\)

\(\Leftrightarrow3S-S=\left(3+3^2+..........+3^{2018}\right)-\left(1+3+.....+3^{2017}\right)\)

\(\Leftrightarrow2S=3^{2018}-1\)

\(\Leftrightarrow S=\dfrac{3^{2018}-1}{2}\)

13 tháng 12 2018

a, S=1+2^7+(2+2^2)+(2^3+2^4)+(2^5+2^6)

    S=1+128+2*3+(2^3*1+2^3*2)+(2^5*1+2^5*2)

    S=129+2*3+2^3*(1+2)+2^5*(1+2)

    S=3*43+2*3+2^3*3+2^5*3

    S=3*(43+2+2^3+2^5)chia hết cho 3 nên S chia hết cho 3

     

26 tháng 12 2018

c) S = ( -2 ) + 4+ ( -6 ) + 8 + ... + ( -2002 ) + 2004

    S = [ (-2)+4] + [ (-6) + 8 ] + ... + [ (-2002) + 2004 ]

    S = 2 + 2 + 2 + ... + 2 ( 501 số hạng 2 )

    S = 2*501

    S = 1002

21 tháng 3 2018

a, Tính 2S rồi S=2S-S= 261-2

b, nhóm 2 số rồi t/c phân phối được chia hết cho 3

nhóm 3 số rồi t/c phân phối được chia hết cho 7

nhóm 4 số rồi t/c phân phối được chia hết cho 15

nhóm 5 số rồi t/c phân phối được chia hết cho 31

nhóm 6 số rồi t/c phân phối được chia hết cho 63

nhóm 7 số rồi t/c phân phối được chia hết cho 127

19 tháng 3 2018

Em tham khảo tại link dưới đây nhé.

Câu hỏi của Nguyễn Hoàng Phi 6 - Toán lớp 6 - Học toán với OnlineMath

9 tháng 2 2019

\(A=2+2^2+2^3+...+2^{60}\)

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)

\(A=2\cdot\left(1+2\right)+2^3\cdot\left(1+2\right)+...+2^{59}\cdot\left(1+2\right)\)

\(A=2\cdot3+2^3\cdot3+...+2^{59}\cdot3\)

\(A=3\cdot\left(2+2^3+...+2^{59}\right)\)

\(\Rightarrow A⋮3\)

\(A=2+...+2^{60}\)

\(A=\left(2+2^2+2^3\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)

\(A=2.\left(1+2+2^2\right)+...+2^{58}.\left(1+2+2^2\right)\)

\(A=2.7+...+2^{58}.7\)

\(A=7.\left(2+...+2^{58}\right)\)

\(\Rightarrow A⋮7\)

\(A=2+2^2+...+2^{60}\)

\(A=\left(2+2^2+2^3+2^4\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)

\(A=2.\left(1+2+2^2+2^3\right)+...+2^{57}.\left(1+2+2^2+2^3\right)\)

\(A=2.15+...+2^{57}.15\)

\(A=15.\left(2+...+2^{57}\right)\)

\(\Rightarrow A⋮15\)

3 tháng 2 2019

a, chứng minh rằng : nếu (ab+cd+eg)  \(⋮\)11 thì abcdeg \(⋮\)11

abcdeg=10000.ab+100.cd+eg=9999.ab+99.cd+(ab+cd+eg) 

Vì 9999.ab chia hết cho11,99.cd chia hết cho 11 và ab+cd+ag chia hết cho 11

=> abcdeg chia hết cho 11(đcpcm)

3 tháng 2 2019

a,có (ab+cd+eg) chia hết cho 11

=>ab chia hết cho 11=>ab*10000 chia hết cho 11 ;cd chia hết cho 11=>cd*100 chia hết cho 11 ;eg chia hết cho 11

abcdeg=ab*10000+cd*100+eg  

Từ 2điều kiện trên =>abcdeg chia hết cho 11

5 tháng 8 2023

a, A = 2 + 22 + 23 + 24 +....+ 260

A = (2 + 22) + ( 23 + 24) +...+ (259 + 260)

A = 2.(1 + 2) + 23.(1 + 2) +...+ 259.(1 + 2)

A = 2.3 + 23.3 +...+ 259.3

A = 3.( 2 + 23+...+ 259) vì 3 ⋮ 3 ⇒ A = 3.(2 + 23 +...+ 259) ⋮ 3 (đpcm)

A = 2 + 22 + 23+ 24+...+ 260 

A = ( 2 + 22 + 23) + ( 24 + 25 + 26) +...+ (258 + 259 + 260)

A = 2.( 1 + 2 + 4) + 24.(1 + 2 + 4)+...+ 258.(1 + 2+4)

A = 2.7 + 24.7 +...+258.7

A = 7.(2 + 2+ ...+ 258) vì 7 ⋮ 7 ⇒ A = 7.(2 + 24+...+ 258)⋮ 7(đpcm)

    A = 2 + 22 + 23 + 24 +...+ 260

    A = (2 + 22 + 23 + 24) +...+( 257 + 258 + 259+ 260)

   A = 2.(1 + 2 + 22 + 23) +...+ 257.(1 + 2 + 22+23)

   A = 2.30 + ...+ 257. 30

  A = 30.( 2 +...+ 257) vì 30 ⋮ 15 ⇒ 30.( 2 + ...+ 257) ⋮ 15 (đpcm)