K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2018

 a ) S = 2+22 + 2+...+ 22014     

    4S = 2+ 24 + 26 + ... + 22016

Mà S =  ( 4S- S ) : 3 

=>  S = [ ( 22 + 24  + 26 +...+ 22016 ) - ( 20 + 2+ 2+...+ 22014 ) ] : 3

          = [ 22016 - 20  ]   : 3

          = \(\frac{2^{2016}-1}{3}\)    

b) S = 20 + 2+ 24 + ... + 22014

       = ( 2+ 2+ 2) + ( 25 + 2+ 27 ) + ...+ ( 22010 + 22012 + 22014 )

       =    21   +  25 x ( 20 + 22 + 24 ) +... + 22010 x  ( 20 + 22 + 24 )

       =   21 +  2x 21   + ... + 22010 x 21

       = 21 x  ( 1 + 25 + ... + 22010 )

=> S \(⋮\)21    (đpcm)

               

20 tháng 3 2018

2S=2^2+2^3+2^4+...+2^61

2S-S=S=2^61-2

còn câu b bạn tự làm nhé

9 tháng 10 2017

a/ Ta có :

\(S=1+3+3^2+........+3^{2017}\)

\(\Leftrightarrow S=\left(1+3\right)+\left(3^2+3^3\right)+......+\left(3^{2016}+3^{2017}\right)\)

\(\Leftrightarrow S=1\left(1+3\right)+3^2\left(1+3\right)+......+3^{2016}\left(1+3\right)\)

\(\Leftrightarrow S=1.4+3^2.4+........+3^{2016}.4\)

\(\Leftrightarrow S=4\left(1+3^2+......+3^{2016}\right)⋮4\left(đpcm\right)\)

b/ \(S=1+3+..........+3^{2017}\)

\(\Leftrightarrow3S=3+3^2+.........+3^{2017}+3^{2018}\)

\(\Leftrightarrow3S-S=\left(3+3^2+..........+3^{2018}\right)-\left(1+3+.....+3^{2017}\right)\)

\(\Leftrightarrow2S=3^{2018}-1\)

\(\Leftrightarrow S=\dfrac{3^{2018}-1}{2}\)

3 tháng 2 2019

a, \(S=3^0+3^2+3^4+...+3^{2002}\)

\(3^2S=3^2+3^4+3^6+...+3^{2004}\)

\(8S=3^{2004}-1\) 

\(S=\frac{3^{2004}-1}{8}\)

3 tháng 2 2019

S=30+32+34+36+...+32002

S=(30+32+34)+(36+38+310)+...(31988+32000+32002)

S=91.1+36.(30+32+34)+...+31988.(30+32+34)

S=91.1+36.91+...+31988.91

S=91.(1+36+..+31988)

S=7.13.(1+36+..+31988)

=>S chia hết cho 7

23 tháng 1 2016

a)  \(S=1+3^2+3^4+3^6+...+3^{2002}\)

\(3^2.S=3^2+3^4+3^6+3^8+...+3^{2004}\)

\(9S-S=\left(3^2+3^4+3^6+3^8+...+3^{2004}\right)-\left(1+3^2+3^4+3^6+...+3^{2002}\right)\)

\(8S=3^{2004}-1\)

\(S=\frac{3^{2004}-1}{8}\)

 

b)  \(S=1+3^2+3^4+3^6+...+3^{2002}\)

\(=\left(1+3^2+3^4\right)+3^6\left(1+3^2+3^4\right)+...+2^{1998}\left(1+3^2+3^4\right)\)

\(=\left(1+3^2+3^4\right)\left(1+3^6+...+3^{1998}\right)\)

\(=91\left(1+3^6+...+3^{1998}\right)\)

\(=7.13\left(1+3^6+...+3^{1998}\right)\)

Vậy S chia hết cho 7

 

18 tháng 4 2018

a,S=\(\left(2+2^2+2^3+2^4+2^5+2^6\right)+.....+\left(2^{85}+2^{86}+2^{87}+2^{88}+2^{89}+2^{90}\right)\)

\(=126+2^6.\left(2+2^2+2^3+2^4+2^5+2^6\right)+...+2^{84}.\left(2+2^2+2^3+2^4+2^5+2^6\right)\)

\(=126+2^6.126+...+2^{84}.126\)

\(=126.\left(2^0+2^6+2^{12}+....+2^{84}\right)=21.6.\left(2^0+2^6+....+2^{84}\right)\) chia hết cho 21

b,Xét x=0 thì \(5^y=1+124=125\Rightarrow y=3\)(thỏa mãn)

Xét x\(>0\) thì \(5^y>1+124=125>0\) nên \(5^y\) là số lẻ mà \(2^x\) là số chẵn \(\Rightarrow2^x+124\) là số chẵn(vô lí)

Vậy x=0,y=3 thỏa mãn

S = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99

S = (1 - 3 + 3^2 - 3^3) + ... + (3^96 - 3^97 + 3^98 - 3^99 )

S = (-20) + (-20) +...+ (-20)   (24 số -20)

S = (-20).24 chia hết cho -20

=> đpcm

14 tháng 4 2019

Câu hỏi của Nguyễn Dương - Toán lớp 6 - Học toán với OnlineMath

Bạn tham khảo.

13 tháng 12 2018

a, S=1+2^7+(2+2^2)+(2^3+2^4)+(2^5+2^6)

    S=1+128+2*3+(2^3*1+2^3*2)+(2^5*1+2^5*2)

    S=129+2*3+2^3*(1+2)+2^5*(1+2)

    S=3*43+2*3+2^3*3+2^5*3

    S=3*(43+2+2^3+2^5)chia hết cho 3 nên S chia hết cho 3

     

26 tháng 12 2018

c) S = ( -2 ) + 4+ ( -6 ) + 8 + ... + ( -2002 ) + 2004

    S = [ (-2)+4] + [ (-6) + 8 ] + ... + [ (-2002) + 2004 ]

    S = 2 + 2 + 2 + ... + 2 ( 501 số hạng 2 )

    S = 2*501

    S = 1002

27 tháng 10 2019

bn làm như bạn dưới hướng dẫn

27 tháng 10 2019

Của mình là 32020 mà của ngta mũ là 2002 mà !! ;(

AH
Akai Haruma
Giáo viên
9 tháng 7 2024

Lời giải:

$S=3^0+3^2+3^4+...+3^{2014}$

$3^2S=3^2+3^4+3^6+...+3^{2016}$

$\Rightarrow 3^2S-S=3^{2016}-3^0$

$\Rightarrow 8S=3^{2016}-1$

$\Rightarrow S=\frac{3^{2016}-1}{8}$

b.

$S=(3^0+3^2+3^4)+(3^6+3^8+3^{10})+....+(3^{2010}+3^{2012}+3^{2014})$

$=(1+3^2+3^4)+3^6(1+3^2+3^4)+...+3^{2010}(1+3^2+3^4)$

$=(1+3^2+3^4)(1+3^6+...+3^{2010})=91(1+3^6+...+3^{2010})$

$=7.13(1+3^6+...+3^{2010})\vdots 7$.