Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
... tìm số dư khi chia hết???
nếu nó chia hết thì số dư bằng 0 rồi
S = 2 + 22 + 23 + ...+2100
S \(\times\) 2 = 22 + 23 +...+2100+2101
2S - S = 2101 - 2
S = 2101 - 2
\(5+5^2+5^3+...+5^{10}\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^9+5^{10}\right)\)
\(=5\left(1+5\right)+...+5^9\left(1+5\right)\)
\(=5.6+...+5^9.6\)
\(=6\left(5+...+5^9\right)⋮6\)
5 + 52 + 53 + 54 + ... + 59 + 510
= ( 5 + 52 ) + ( 53 + 54 ) + ... + ( 59 + 510 )
= 5( 1 + 5 ) + 53( 1 + 5 ) + ... + 59( 1 + 5 )
= 5.6 + 53.6 + ... + 59.6
= 6( 5 + 53 + ... + 59 ) chia hết cho 6 ( đpcm )
B = 31 + 32 + 33 + ... + 328 + 329 + 330
B = ( 31 + 32 + 33 ) + ... + ( 328 + 329 + 330 )
B = 31 . ( 1 + 3 + 32 ) + ... + 328 . ( 1 + 3 + 32 )
B = 31 . 13 + ... + 328 . 13
B = 13 . ( 3 + ... + 328 ) \(⋮\)13
Vậy B \(⋮\)13 ( dpcm )
\(B=3^1+3^2+3^3+3^4+3^5+............+3^{30}\)
\(\Rightarrow B=\left(3^1+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+............+\left(3^{28}+3^{29}+3^{30}\right)\)
\(\Rightarrow B=3^1.\left(1+3+3^2\right)+3^4.\left(1+3+3^2\right)+.........+3^{28}.\left(1+3+3^2\right)\)
\(\Rightarrow B=3^1.13+3^4.13+.........+3^{28}.13\)
\(\Rightarrow B=13\left(3^1+3^4+.........+3^{28}\right)\)
Mà 13 \(⋮\)13 \(\Rightarrow13\left(3^1+3^4+...........+3^{28}\right)⋮13\)
Vậy B chia hết cho 13
2B= 22+23+24+...+2100
=>B=2B-B=22+23+24+...+2100-(21+22+23+...+299)=2100-2<2101-1
\(B=2^1+2^3+2^5+...+2^{99}\)
\(2^2B=2^2\left(2+2^3+2^5+...+2^{99}\right)\)
\(4B=2^3+2^5+2^7+...+2^{101}\)
\(4B-B=\left(2^3+2^5+2^7+...+2^{101}\right)-\left(2^1+2^3+2^5+..+2^{99}\right)\)
\(3B=2^{101}-2\)
\(B=\frac{2^{101}-2}{3}\) < \(F=2^{101}-2\)