K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2020

\(5+5^2+5^3+...+5^{10}\)

\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^9+5^{10}\right)\)

\(=5\left(1+5\right)+...+5^9\left(1+5\right)\)

\(=5.6+...+5^9.6\)

\(=6\left(5+...+5^9\right)⋮6\)

7 tháng 10 2020

5 + 52 + 53 + 54 + ... + 59 + 510

= ( 5 + 52 ) + ( 53 + 54 ) + ... + ( 59 + 510 )

= 5( 1 + 5 ) + 53( 1 + 5 ) + ... + 59( 1 + 5 )

= 5.6 + 53.6 + ... + 59.6

= 6( 5 + 53 + ... + 59 ) chia hết cho 6 ( đpcm )

2 tháng 4 2018

... tìm số dư khi chia hết???

nếu nó chia hết thì số dư bằng 0 rồi

2 tháng 4 2018

bạn nếu cách làm đi

7 tháng 10 2015

mình chỉ cho bạn ghi mủ nè nhấn vào x2

25 tháng 10 2023

Tổng a có ssh là (8-1):1-1=8

Vì 8:2=4

Đo đó ta nhóm tổng a thành 4 nhóm mỗi nhóm có 2 số hạng 

(5+5²)+(5³+5⁴)+...+(5⁷+5⁸)

5×(1+5)+5³×(1+5)+5⁷×(1+5)

5×6+5³×6+...+5⁷×6

6×(5+5³+...+5⁷)

Vì 6:6 nên a:6

VậyA:6

 

 

 

 

28 tháng 6 2018

B = 31 + 32 + 33 + ... + 328 + 329 + 330

B = (  31 + 32 + 33 ) + ... + ( 328 + 329 + 330 )

B = 31 . ( 1 + 3 + 32 ) + ... + 328 . ( 1 + 3 + 32 )

B = 31 . 13 + ... + 328 . 13

B = 13 . ( 3 + ... + 328 ) \(⋮\)13

Vậy B \(⋮\)13 ( dpcm )

28 tháng 6 2018

\(B=3^1+3^2+3^3+3^4+3^5+............+3^{30}\)

\(\Rightarrow B=\left(3^1+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+............+\left(3^{28}+3^{29}+3^{30}\right)\)

\(\Rightarrow B=3^1.\left(1+3+3^2\right)+3^4.\left(1+3+3^2\right)+.........+3^{28}.\left(1+3+3^2\right)\)

\(\Rightarrow B=3^1.13+3^4.13+.........+3^{28}.13\)

\(\Rightarrow B=13\left(3^1+3^4+.........+3^{28}\right)\)

Mà 13 \(⋮\)13 \(\Rightarrow13\left(3^1+3^4+...........+3^{28}\right)⋮13\)

Vậy B chia hết cho 13

16 tháng 4 2020

A=5+52+53+....+59+510

=> A=(5+52)+(53+54)+...+(59+510)

=> A=5(1+5)+53(1+5)+....+59(1+5)

=> A=5.6+53.6+....+59.6

=> A=6(5+53+....+59)

=> A chia hết cho 6 (đpcm)

16 tháng 4 2020

A=5+52+53+....+59+510

=> A=(5+52)+(53+54)+...+(59+510)

=> A=5(1+5)+53(1+5)+....+59(1+5)

=> A=5.6+53.6+....+59.6

=> A=6(5+53+....+59)

=> A chia hết cho 6 (đpcm)

16 tháng 7 2016

65536

387420489

33554432

536870912

390625

6561

16 tháng 7 2016

24 . 26 . 2 = 211

35 . 27 . 81 . 36 = 35 . 33 . 34 . 36 = 318

42 . 415 . 64 = 42 . 415 . 43 = 420

29 . 16 . 48 = 29 . 24 . (22)8 = 2. 24 . 216 = 229

512 : 54 = 58

274 : 34 = (27:3)4 = 94

9 tháng 9 2017

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)

              \(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)

              \(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)

              \(=6\times\left(2^2+2^3+...+2^{2008}\right)\)

              \(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)

               \(\Rightarrow A⋮3\)

*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)

               \(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)

               \(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)

               \(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)

                \(\Rightarrow A⋮7\)

Mình sửa lại đề C 1 chút xíu

*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)

               \(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)

               \(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)

                \(\Rightarrow C⋮4\)

Các câu khác làm tương tự nhé. Chúc bạn học tốt!

10 tháng 12 2017

Thanks bạn

DD
16 tháng 12 2020

a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)

\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)

Các ý dưới bạn làm tương tự nhé. 

19 tháng 10 2023

Đặt \(A=5+5^2+5^3+5^4+...+5^{49}+5^{50}\)

\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{49}+5^{50}\right)\)

\(=5.\left(1+5\right)+5^3.\left(1+5\right)+...+5^{49}.\left(1+5\right)\)

\(=5.6+5^3.6+...+5^{49}.6\)

\(=6.\left(5+5^3+...+5^{49}\right)⋮6\)

Vậy \(A⋮6\)