\(\frac{n-1}{n-2}\)​( n​ E [] ; n không E 2 ) . Tìm
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2020

- Để M là phân số tối giản \(\Rightarrow\)\(n-1\)không chia hết cho \(n-2\)

- Ta có: \(n-1=\left(n-2\right)+1\)

- Để \(n-1\)không chia hết cho \(n-2\)\(\Leftrightarrow\)\(\left(n-2\right)+1\)không chia hết cho \(n-2\)mà \(n-2⋮n-2\)

 \(\Rightarrow\)\(1\)không chia hết cho \(n-2\)\(\Rightarrow\)\(n-2\notinƯ\left(1\right)\)\(\Leftrightarrow\)\(n-2\notin\left\{\pm1\right\}\)

 +  \(n-2\ne1\)\(\Leftrightarrow\)\(n\ne1+2\)\(\Leftrightarrow\)\(n\ne3\)

 +  \(n-2\ne-1\)\(\Leftrightarrow\)\(n\ne-1+2\)\(\Leftrightarrow\)\(n\ne1\)

Vậy để M là phân số tối giản thì \(n\ne3\)và \(n\ne1\)

20 tháng 1 2016

\(B=\frac{2n+4}{n^2+4n+3}=\frac{2.\left(n+2\right)}{n^2+n+3n+3}=\frac{2.\left(n+2\right)}{n.\left(n+1\right)+3.\left(n+1\right)}=\frac{2.\left(n+2\right)}{\left(n+1\right)\left(n+3\right)}\)

+) Nếu n = 2k:

2.(2k+2) = 4.(k+1) = chẵn

(2k+1).(2k+3) = lẻ . lẻ = lẻ

=> B tối giản

+) Nếu n = 2k+1:

2.(2k+1+2) = 2.(2k+3) = chẵn

(2k+1+1).(2k+1+3) = 2.(k+1).2.(k+2)=4.(k+1)(k+2) = chẵn

=> B không tối giản

Vậy với n là số chẵn thì B tối giản; n là số lẻ thì B không tối giản.

23 tháng 4 2020

B1. Ta có: A= \(\frac{4n-1}{2n+3}+\frac{n}{2n+3}=\frac{4n-1+n}{2n+3}=\frac{5n-1}{2n+3}\)

=> 2A = \(\frac{10n-2}{2n+3}=\frac{5\left(2n+3\right)-17}{2n+3}=5-\frac{17}{2n+3}\)

Để A là số nguyên <=> 2A là số nguyên <=> \(\frac{17}{2n+3}\in Z\)

<=> 17 \(⋮\)2n + 3 <=> 2n + 3 \(\in\)Ư(17) = {1; -1; 17; -17}

Lập bảng:

 2n + 3 1 -1 17 -17
  n -1 -2 7 -10

Vậy ....

23 tháng 4 2020

Bài 2:

Gọi d là ƯCLN (7n-1; 6n-1) (d thuộc N*)

\(\Rightarrow\hept{\begin{cases}7n-1⋮d\\6n-1⋮d\end{cases}\Rightarrow\hept{\begin{cases}6\left(7n-1\right)⋮d\\7\left(6n-1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}42n-6⋮d\\42n-7⋮d\end{cases}}}\)

=> 42n-7-42n+6 chia hết cho d

=> -1 chia hết cho d

mà d thuộc N* => d=1

=> ƯCLN (7n-1; 6n-1)=1

=> đpcm

9 tháng 2 2019

Theo mk:

18n+3/21n+7=3(6n + 1)/7(3n+1)

Mà 3n+1 nà 6n +1 là số đôi một ng/tố cùng nhau

Vậy để p/s 18n+3/21n+7 là p/s tối giản thì 6n+1 ko chia hết cho 7 

Suy ra n= -7k + 1 (k e Z)

a)      n phải khác 2

b)     để A nguyên thì 

1 chia hết cho 2-n

=> 2-n thuộc  tập ước của 1 

=> hoặc 2-n=1 =>n=1

hoặc 2-n=-1 =>n=3

hk tốt

1 tháng 5 2019

a) Để A là phân số thì \(2-n\ne0\)

\(\Leftrightarrow n\ne2\)

b) Để A nguyên thì \(1⋮\left(2-n\right)\)

\(\Leftrightarrow2-n\inƯ\left(1\right)=\left\{\pm1\right\}\)

Lập bảng:

\(2-n\)\(1\)\(-1\)
\(n\)\(1\)\(3\)

Vậy n = 1 hoặc n = 3 thì A nguyên

Ta phải tìm số nguyên dương n để A là số nguyên tố.Với :

A=n^2/60-n=60^2-(60^2-n^2)/60-n=-(60^2-n^2)/60-n+60^2/60-n=-(60+n)+3600/60+n 

Muốn A  là số nguyên tố trước hết A là số nguyên.Như vậy (60-n) là ước nguyên dương của 3600,suy ra n<60 và 3600:(60-n) phải lớn hơn 60+n, đồng thời thỏa mãn A là số nguyên tố.Ta kiểm tra lần lượt các giá trị của n là ước của 60:

Trường hợp 1:n=30 => Ta có A=-90+3600:30=30 không là số nguyên tố => loại

Trường hợp 2:n=15 => Ta có A=-75+3600:45=5 là số nguyên tố => chọn

Trường hợp 3:n=12 => Ta có A=-72+3600:48=3 là số nguyên tố => chọn

Trường hợp 4: n=6,n=5,n=3,n=2 thì A không là số nguyên => loại. Suy ra:n=1 thì A âm => loại

Vậy n=12 và n=15 

Em làm chưa chắc đúng nha, chị thông cảm.
 

28 tháng 7 2020

a) \(A=\frac{n-5}{n+1}=\frac{n+1-6}{n+1}=1-\frac{6}{n+1}\)

=> A có giá trị nguyên <=> n + 1 \(\in\)\(\pm1;\pm2;\pm3;\pm6\)}

n + 11-12-23-36-6
n0-21-32-45-7

b) Muốn cho \(\frac{n-5}{n+1}\)là phân số tối giản thì (n - 5,n + 1) = 1 . Ta biết rằng nếu (a,b) = 1 thì (a,a - b) = 1 , từ đó suy ra (n - 5,6) = 1

=> (n - 5) không chia hết cho ...(tự điền ra) hay n là số chẵn 

20 tháng 7 2020

Gọi d là ước chung của 2n+5 và 2n+3

=> 2n+5 chia hết cho d và 2n+3 chia hết cho d

=> (2n+5)-(2n+3)=2 chia hết cho d => d={1;2}

Do 2n+5 và 2n+3 lẻ => d lẻ => d=1

=> phân số trên tối giản với mọi n

21 tháng 7 2020

Cảm ơn bạn NGUYỄN NGỌC ANH MINH nhiều

18 tháng 3 2021

a) Vì n\(\inℕ\)nên n + 1 \(\inℕ\)và 2n + 3\(\inℕ\).

Gọi d \(\in\)ƯCLN ( n + 1 , 2n + 3 )

\(\Rightarrow n+1⋮d\)và \(2n+3⋮d\)

\(\Rightarrow\left(2n+3\right)-2\left(n+1\right)⋮d\)

\(\Rightarrow2n+3-2n-2⋮d\)

\(\Rightarrow1⋮d\Rightarrow d\in\left\{1;-1\right\}\)

\(\Rightarrow\frac{n+1}{2n+3}\)là phân số tối giản .

                           Vậy \(\frac{n+1}{2n+3}\)tối giản \(\forall n\inℕ\).

18 tháng 3 2021

b) TƯƠNG TỰ CÂU (a)

4 tháng 4 2020

ví dụ là 1 số chẳn là 2 thi phấn số sẻ ra \(\frac{2}{2+1}\)bằng số liên tiếp ko chia được nêu trường hợp a là số lẻ là 3 thì cũng như vậy thui nha k đi

4 tháng 4 2020

Gọi d là ƯCLN của a,a+1

Ta có:\(a⋮d;a+1⋮d\)

\(\Leftrightarrow a+1-a⋮d\)

\(\Leftrightarrow1⋮d\)

\(\Leftrightarrow d=1\)

Vậy \(\frac{a}{a+1}\) là phân số tối giản