Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để 10n/5n-3 là số nguyên(n thuộc Z) suy ra 10n chia hết cho 5n-3
suy ra 5n-3 chia hết cho 5n-3 suy ra 2(5n-3) hay10n-6 chia hết cho 5n-3
suy ra 10n-(10n-6) chia hết cho 5n-3
suy ra 6 chia hết cho 5n-3
suy ra 5n-3 thuộc ư(6)={2;-3}
5n thuộc {5;0}
n thuộc {1;0}
Ta có 1/101+1/102+...+1/200>1/200+1/200+...+1/200(có 100 phân số 1/200)=1/2
suy ra
1/2<D
Ta có 1/101+1/102+...+1/200<1/100+1/100+...+1/100(100 phân số 1/100)=1
Vậy 1/2<D<1(thỏa mãn điều kiện chứng minh)
a) \(A=\frac{n-5}{n+1}=\frac{n+1-6}{n+1}=1-\frac{6}{n+1}\)
=> A có giá trị nguyên <=> n + 1 \(\in\){ \(\pm1;\pm2;\pm3;\pm6\)}
n + 1 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
n | 0 | -2 | 1 | -3 | 2 | -4 | 5 | -7 |
b) Muốn cho \(\frac{n-5}{n+1}\)là phân số tối giản thì (n - 5,n + 1) = 1 . Ta biết rằng nếu (a,b) = 1 thì (a,a - b) = 1 , từ đó suy ra (n - 5,6) = 1
=> (n - 5) không chia hết cho ...(tự điền ra) hay n là số chẵn
a) n phải khác 2
b) để A nguyên thì
1 chia hết cho 2-n
=> 2-n thuộc tập ước của 1
=> hoặc 2-n=1 =>n=1
hoặc 2-n=-1 =>n=3
hk tốt
a) Để A là phân số thì \(2-n\ne0\)
\(\Leftrightarrow n\ne2\)
b) Để A nguyên thì \(1⋮\left(2-n\right)\)
\(\Leftrightarrow2-n\inƯ\left(1\right)=\left\{\pm1\right\}\)
Lập bảng:
\(2-n\) | \(1\) | \(-1\) |
\(n\) | \(1\) | \(3\) |
Vậy n = 1 hoặc n = 3 thì A nguyên
Ta phải tìm số nguyên dương n để A là số nguyên tố.Với :
A=n^2/60-n=60^2-(60^2-n^2)/60-n=-(60^2-n^2)/60-n+60^2/60-n=-(60+n)+3600/60+n
Muốn A là số nguyên tố trước hết A là số nguyên.Như vậy (60-n) là ước nguyên dương của 3600,suy ra n<60 và 3600:(60-n) phải lớn hơn 60+n, đồng thời thỏa mãn A là số nguyên tố.Ta kiểm tra lần lượt các giá trị của n là ước của 60:
Trường hợp 1:n=30 => Ta có A=-90+3600:30=30 không là số nguyên tố => loại
Trường hợp 2:n=15 => Ta có A=-75+3600:45=5 là số nguyên tố => chọn
Trường hợp 3:n=12 => Ta có A=-72+3600:48=3 là số nguyên tố => chọn
Trường hợp 4: n=6,n=5,n=3,n=2 thì A không là số nguyên => loại. Suy ra:n=1 thì A âm => loại
Vậy n=12 và n=15
Em làm chưa chắc đúng nha, chị thông cảm.