\(\frac{10n}{5n-3}\)với n...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2019

để 10n/5n-3 là số nguyên(n thuộc Z) suy ra 10n chia hết cho 5n-3

suy ra 5n-3 chia hết cho 5n-3 suy ra 2(5n-3) hay10n-6 chia hết cho 5n-3

suy ra 10n-(10n-6) chia hết cho 5n-3

 suy ra 6 chia hết cho 5n-3

suy ra 5n-3 thuộc ư(6)={2;-3}

           5n thuộc {5;0}

           n thuộc {1;0}     

           

15 tháng 3 2019

Ta có 1/101+1/102+...+1/200>1/200+1/200+...+1/200(có 100 phân số 1/200)=1/2

suy ra

  1/2<D

Ta có 1/101+1/102+...+1/200<1/100+1/100+...+1/100(100 phân số 1/100)=1

Vậy 1/2<D<1(thỏa mãn điều kiện chứng minh)

1 tháng 8 2019

\(1,\left|x+2\right|-12=-1\)

\(\Rightarrow\left|x+2\right|=11\)

\(\Rightarrow\orbr{\begin{cases}x+2=11\\x+2=-11\end{cases}}\Rightarrow\orbr{\begin{cases}x=9\\x=-13\end{cases}}\)

\(2,135-\left|9-x\right|=35\)

\(\Rightarrow\left|9-x\right|=100\)

\(\Rightarrow\orbr{\begin{cases}9-x=100\\9-x=-100\end{cases}\Rightarrow\orbr{\begin{cases}x=-91\\x=109\end{cases}}}\)

\(3,xy+2x+2y=-16\)

\(\Rightarrow x\left(y+2\right)+2y+4=-16+4\)

\(\Rightarrow x\left(y+2\right)+2\left(y+2\right)=-12\)

\(\Rightarrow\left(x+2\right)\left(y+2\right)=-12\)

xét bảng :

x+2-11-22-33-44-66-1212
y+2-1212-66-44-33-22-11
x-3-1-40-51-62-84-1410
y-1410-84-62-51-50-3-1
22 tháng 11 2018

Để \(\frac{2n+5}{n+3}\)là số tự nhiên thì :\(2n+5⋮n+3\)

\(\hept{\begin{cases}2n+5⋮n+3\\n+3⋮n+3\end{cases}}\)\(=>\hept{\begin{cases}2n+5⋮n+3\\2n+6⋮n+3\end{cases}=>2n+6-2n-5⋮n+3}\)

(=) 1\(⋮\)n+3

=> n+3\(\in\)Ư(1)

=> n ko tồn tại

22 tháng 11 2018

\(Tadellco::\left(\right)\left(\right)\)

\(\frac{2n+5}{n+3}\in Z\Rightarrow2n+5⋮n+3\Rightarrow2\left(n+3\right)-\left(2n+5\right)=1⋮n+3\Rightarrow n+3\in\left\{1;-1\right\}\)

\(\Rightarrow n\in\left\{-4;-2\right\}\)

b, \(Tadellco\left(to\right)\left(rim\right)\)

\(\frac{1}{2^2}+\frac{1}{3^2}+.......+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-.....-\frac{1}{100}\)

\(=1-\frac{1}{100}< 1\Rightarrow...........\)

4 tháng 6 2019

Bn ko lm thì thôi ik

a)      n phải khác 2

b)     để A nguyên thì 

1 chia hết cho 2-n

=> 2-n thuộc  tập ước của 1 

=> hoặc 2-n=1 =>n=1

hoặc 2-n=-1 =>n=3

hk tốt

1 tháng 5 2019

a) Để A là phân số thì \(2-n\ne0\)

\(\Leftrightarrow n\ne2\)

b) Để A nguyên thì \(1⋮\left(2-n\right)\)

\(\Leftrightarrow2-n\inƯ\left(1\right)=\left\{\pm1\right\}\)

Lập bảng:

\(2-n\)\(1\)\(-1\)
\(n\)\(1\)\(3\)

Vậy n = 1 hoặc n = 3 thì A nguyên

6 tháng 4 2019

\(P=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2019^2}< 1+\frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}\)

\(P< 1+\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}=\frac{7}{4}-\frac{1}{2019}< \frac{7}{4}\)

15 tháng 8 2019

\(B=\frac{1}{1+3}+\frac{1}{1+3+5}+...+\frac{1}{1+3+...+101}\)

\(B=\frac{1}{4}+\frac{1}{9}+...+\frac{1}{51}\)

\(B=\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+...+\frac{1}{3\cdot17}\)

\(B=\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+...+\frac{1}{3}-\frac{1}{17}\)

\(B=\frac{1}{2}-\frac{1}{17}\)

\(B=\frac{15}{34}\)

TU DO \(=>\frac{15}{34}< \frac{3}{4}\)HOAC \(B< \frac{3}{4}\)

 CHUC BAN HOC TOT :)) 

21 tháng 8 2019

Ta có: \(1+3=\frac{\left(1+3\right).\left[\left(3-1\right):2+1\right]}{2}=\frac{4.2}{2}=2.2\)

\(1+3+5=\frac{\left(1+5\right).\left[\left(5-1\right):2+1\right]}{2}=\frac{6.3}{2}=3.3\)

                  \(.................\)

\(1+3+5+...+101=\frac{\left(1+101\right).\left[\left(101-1\right):2+1\right]}{2}=\frac{102.5}{2}=51.51\)

\(\Rightarrow B=\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{51.51}\)

\(\Rightarrow B< \frac{1}{2.2}+\frac{1}{2.3}+...+\frac{1}{50.51}=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{50}-\frac{1}{51}\)

\(\Rightarrow B< \left(\frac{1}{4}+\frac{1}{2}\right)-\frac{1}{51}\)

\(\Rightarrow B< \frac{3}{4}-\frac{1}{51}< \frac{3}{4}\)

\(\Rightarrow B>\frac{3}{4}\left(đpcm\right)\)

-\(\left(\frac{-1}{5}+\frac{3}{12}\right)+\frac{-3}{4}=\frac{-1}{5}+\left(\frac{3}{12}+\frac{-3}{4}\right)\) =\(\frac{-1}{5}+\left(\frac{1}{4}+\frac{-3}{4}\right)=\frac{-1}{5}+\frac{2}{4}\)\(\frac{-4}{20}+\frac{10}{20}=\frac{6}{20}=\frac{3}{10}\)

\(\frac{1}{5}+\frac{14}{20}+\frac{6}{21}=\frac{1}{5}+\frac{7}{10}+\frac{2}{7}\)\(\frac{14}{70}+\frac{49}{70}+\frac{20}{70}=\frac{83}{70}\)

20 tháng 6 2019

Lê Minh Phương tham khảo bài mình nhé

\(a,\frac{9}{-7}< x>\frac{7}{2}\)

\(\Leftrightarrow\frac{-9}{7}< x>\frac{7}{2}\)

\(\Leftrightarrow\frac{-18}{14}< x>\frac{49}{14}\)

\(\Leftrightarrow-18< x>49\)

\(\Leftrightarrow x\in\left\{-17;-16;-15;...;50\right\}\)

Còn bài kia tương tự

20 tháng 6 2019

\(a,\frac{9}{-7}< x< \frac{7}{2}\)

\(\Rightarrow\frac{9.2}{-7.2}< x< \frac{7.7}{2.7}\)

\(\Rightarrow\frac{-18}{14}< x< \frac{49}{14}\)

\(\text{vì}x\in Z\Rightarrow x=-\frac{14}{14};\frac{0}{14};\frac{14}{14};\frac{28}{14};\frac{42}{14}\)

\(\text{hay }x=\left\{-1;0;1;2;3\right\}\)