Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1. Ta có: A= \(\frac{4n-1}{2n+3}+\frac{n}{2n+3}=\frac{4n-1+n}{2n+3}=\frac{5n-1}{2n+3}\)
=> 2A = \(\frac{10n-2}{2n+3}=\frac{5\left(2n+3\right)-17}{2n+3}=5-\frac{17}{2n+3}\)
Để A là số nguyên <=> 2A là số nguyên <=> \(\frac{17}{2n+3}\in Z\)
<=> 17 \(⋮\)2n + 3 <=> 2n + 3 \(\in\)Ư(17) = {1; -1; 17; -17}
Lập bảng:
2n + 3 | 1 | -1 | 17 | -17 |
n | -1 | -2 | 7 | -10 |
Vậy ....
Bài 2:
Gọi d là ƯCLN (7n-1; 6n-1) (d thuộc N*)
\(\Rightarrow\hept{\begin{cases}7n-1⋮d\\6n-1⋮d\end{cases}\Rightarrow\hept{\begin{cases}6\left(7n-1\right)⋮d\\7\left(6n-1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}42n-6⋮d\\42n-7⋮d\end{cases}}}\)
=> 42n-7-42n+6 chia hết cho d
=> -1 chia hết cho d
mà d thuộc N* => d=1
=> ƯCLN (7n-1; 6n-1)=1
=> đpcm
a) Vì n\(\inℕ\)nên n + 1 \(\inℕ\)và 2n + 3\(\inℕ\).
Gọi d \(\in\)ƯCLN ( n + 1 , 2n + 3 )
\(\Rightarrow n+1⋮d\)và \(2n+3⋮d\)
\(\Rightarrow\left(2n+3\right)-2\left(n+1\right)⋮d\)
\(\Rightarrow2n+3-2n-2⋮d\)
\(\Rightarrow1⋮d\Rightarrow d\in\left\{1;-1\right\}\)
\(\Rightarrow\frac{n+1}{2n+3}\)là phân số tối giản .
Vậy \(\frac{n+1}{2n+3}\)tối giản \(\forall n\inℕ\).
- Để M là phân số tối giản \(\Rightarrow\)\(n-1\)không chia hết cho \(n-2\)
- Ta có: \(n-1=\left(n-2\right)+1\)
- Để \(n-1\)không chia hết cho \(n-2\)\(\Leftrightarrow\)\(\left(n-2\right)+1\)không chia hết cho \(n-2\)mà \(n-2⋮n-2\)
\(\Rightarrow\)\(1\)không chia hết cho \(n-2\)\(\Rightarrow\)\(n-2\notinƯ\left(1\right)\)\(\Leftrightarrow\)\(n-2\notin\left\{\pm1\right\}\)
+ \(n-2\ne1\)\(\Leftrightarrow\)\(n\ne1+2\)\(\Leftrightarrow\)\(n\ne3\)
+ \(n-2\ne-1\)\(\Leftrightarrow\)\(n\ne-1+2\)\(\Leftrightarrow\)\(n\ne1\)
Vậy để M là phân số tối giản thì \(n\ne3\)và \(n\ne1\)
a, Gọi d = ( n + 1 ; 2n + 3 )
\(\Rightarrow\) \(\left(n+1\right)⋮d\) \(\Rightarrow\left(2n+2\right)⋮d\)
\(\left(2n+3\right)⋮d\) \(\left(2n+3\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\) hoặc \(d=-1\)
\(\Rightarrow\) n + 1 ; 2n + 3 là 2 số nguyên tố cùng nhau
Vậy phân số \(\frac{n+1}{2n+3}\) là phân số tối giản
Gọi d là ước chung của 2n+5 và 2n+3
=> 2n+5 chia hết cho d và 2n+3 chia hết cho d
=> (2n+5)-(2n+3)=2 chia hết cho d => d={1;2}
Do 2n+5 và 2n+3 lẻ => d lẻ => d=1
=> phân số trên tối giản với mọi n
a) \(\frac{33}{55}=\frac{33\div11}{55\div11}=\frac{3}{5}\)
b) \(\frac{-56}{72}=\frac{-56\div8}{72\div8}=\frac{-7}{9}\)
c) \(\frac{15}{-105}=\frac{15\div15}{-105\div15}=\frac{1}{-7}\)
d)\(\frac{3.14}{7.9}=\frac{3.2.7}{7.3.3}=\frac{2}{3}\)
Học tốt !
Bài 1. d) \(\frac{9.5-9.3}{18}=\frac{9\left(5-3\right)}{18}=\frac{18}{18}=1\)
Bài 2. Một ngày có 24 giờ. An ngủ 9 giờ mỗi ngày \(\Rightarrow\)An ngủ \(\frac{9}{24}\)ngày hay \(\frac{3}{8}\)ngày
\(\Rightarrow\)thời gian An thức chiếm : 8-3=5 ( phần / ngày)
mik giải thích 1 tí nha
TH1:nếu bn so sánh các p/s cùng mẫu thì tử lớn hơn thì phân số đó lớn hơn
TH2:nếu bn so sánh các p/s cùng tử thì mẫu lớn hơn thì phân số đó nhỏ hơn
ví dụ là 1 số chẳn là 2 thi phấn số sẻ ra \(\frac{2}{2+1}\)bằng số liên tiếp ko chia được nêu trường hợp a là số lẻ là 3 thì cũng như vậy thui nha k đi
Gọi d là ƯCLN của a,a+1
Ta có:\(a⋮d;a+1⋮d\)
\(\Leftrightarrow a+1-a⋮d\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow d=1\)
Vậy \(\frac{a}{a+1}\) là phân số tối giản
UCLN (3n+5:n+2)=1 thì hai số trên nguyên tố cùng nhau rùi .không rút gon được nữa => tối giản
Gọi d là UCLN ( 3n+5;n+2)
Ta có:\(\hept{\begin{cases}3n+5⋮d\\n+2⋮d\end{cases}}\)
\(n+2⋮d\Rightarrow3\left(n+2\right)\)
hay \(3n+6⋮d\)
ta xét hiệu: \(3n+6-\left(3n+5\right)⋮d\)
\(\Rightarrow1⋮d\)
Vậy P là phân số tối giản với mọi n là STN khi UCLN (3n+5;n+2)=1
Chúc bạn hk tốt!!!
\(B=\frac{2n+4}{n^2+4n+3}=\frac{2.\left(n+2\right)}{n^2+n+3n+3}=\frac{2.\left(n+2\right)}{n.\left(n+1\right)+3.\left(n+1\right)}=\frac{2.\left(n+2\right)}{\left(n+1\right)\left(n+3\right)}\)
+) Nếu n = 2k:
2.(2k+2) = 4.(k+1) = chẵn
(2k+1).(2k+3) = lẻ . lẻ = lẻ
=> B tối giản
+) Nếu n = 2k+1:
2.(2k+1+2) = 2.(2k+3) = chẵn
(2k+1+1).(2k+1+3) = 2.(k+1).2.(k+2)=4.(k+1)(k+2) = chẵn
=> B không tối giản
Vậy với n là số chẵn thì B tối giản; n là số lẻ thì B không tối giản.