Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình hoành độ giao điểm là:
\(x^2-2x+4=2mx-m^2\)
=>\(x^2-2x+4-2mx+m^2=0\)
=>\(x^2-x\left(2m+2\right)+m^2+4=0\)
\(\text{Δ}=\left(2m+2\right)^2-4\left(m^2+4\right)\)
\(=4m^2+8m+4-4m^2-16=8m-12\)
Để phương trình có hai nghiệm phân biệt thì Δ>0
=>8m-12>0
=>8m>12
=>\(m>\dfrac{3}{2}\)
Theo Vi-et, ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-2m-2\right)}{1}=2m+2\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{m^2+4}{1}=m^2+4\end{matrix}\right.\)
\(x_1^2+2\left(m+1\right)x_2=3m^2+16\)
=>\(x_1^2+x_2\left(x_1+x_2\right)=3m^2+12+4\)
=>\(x_1^2+x_1\cdot x_2+x_2^2=3x_1x_2+4\)
=>\(x_1^2-2x_1x_2+x_2^2=4\)
=>\(\left(x_1-x_2\right)^2=4\)
=>\(\left(x_1+x_2\right)^2-4x_1x_2=4\)
=>\(\left(2m+2\right)^2-4\left(m^2+4\right)=4\)
=>\(4m^2+8m+4-4m^2-16=4\)
=>8m-12=4
=>8m=16
=>m=2(nhận)
Phương trình hoành độ giao điểm là:
\(x^2+x+1=-x^2+2x+4\)
=>\(x^2+x+1+x^2-2x-4=0\)
=>\(2x^2-x-3=0\)(1)
a=2; b=-1;c=-3
\(a\cdot c=2\cdot\left(-3\right)=-6< 0\)
=>Phương trình (1) có hai nghiệm phân biệt
Theo Vi-et, ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-1\right)}{2}=\dfrac{1}{2}\\x_1\cdot x_2=\dfrac{c}{a}=-\dfrac{3}{2}\end{matrix}\right.\)
\(P=x_1^3+x_2^3\)
\(=\left(x_1+x_2\right)^3-3\cdot x_1\cdot x_2\left(x_1+x_2\right)\)
\(=\left(\dfrac{1}{2}\right)^3-3\cdot\dfrac{-3}{2}\cdot\dfrac{1}{2}\)
\(=\dfrac{1}{8}+\dfrac{9}{4}=\dfrac{1}{8}+\dfrac{18}{8}=\dfrac{19}{8}\)
Phương trình hoành độ giao điểm là:
\(x^2+mx+\left(m+1\right)^2=-x^2-\left(m+2\right)x-2\left(m+1\right)\)
=>\(x^2+mx+\left(m+1\right)^2+x^2+\left(m+2\right)x+2\left(m+1\right)=0\)
=>\(2x^2+\left(2m+2\right)x+2\left(m+1\right)+\left(m+1\right)^2=0\)
=>\(2x^2+\left(2m+2\right)x+\left(m^2+4m+3\right)=0\)
\(\text{Δ}=\left(2m+2\right)^2-4\cdot2\cdot\left(m^2+4m+3\right)\)
\(=4m^2+8m+4-8m^2-32m-24\)
\(=-4m^2-24m-20\)
\(=-4\left(m^2+6m+5\right)=-4\left(m+1\right)\left(m+5\right)\)
Để (P1) cắt (P2) tại hai điểm phân biệt thì Δ>0
=>\(-4\left(m+1\right)\left(m+5\right)>0\)
=>\(\left(m+1\right)\left(m+5\right)< 0\)
TH1: \(\left\{{}\begin{matrix}m+1>0\\m+5< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m>-1\\m< -5\end{matrix}\right.\)
=>Loại
TH2: \(\left\{{}\begin{matrix}m+1< 0\\m+5>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m< -1\\m>-5\end{matrix}\right.\)
=>-5<m<-1
Theo Vi-et, ta có: \(x_1+x_2=\dfrac{-\left(2m+2\right)}{2}=-m-1;x_1\cdot x_2=\dfrac{c}{a}=\dfrac{m^2+4m+3}{2}\)
\(P=\left|x_1x_2-3\left(x_1+x_2\right)\right|\)
\(=\left|\dfrac{m^2+4m+3}{2}-3\left(-m-1\right)\right|\)
\(=\left|\dfrac{m^2+4m+3}{2}+3m+3\right|\)
\(=\dfrac{\left|m^2+4m+3+6m+6\right|}{2}=\dfrac{\left|m^2+10m+9\right|}{2}\)
Biểu thức này không có giá trị lớn nhất nha bạn
vậy biểu thức này có tìm GTNN được không ạ?
nếu tìm được thì mong bạn giải giùm cho mình được không ạ???
a: Khi m=1 thì (P): y=x^2+4x+1+1=x^2+4x+2
Thay y=-1 vào (P), ta được:
x^2+4x+2=-1
=>x^2+4x+3=0
=>(x+1)(x+3)=0
=>x=-1 hoặc x=-3
b: Phươngtrình hoành độ giao điểm là:
x^2+(2m+2)x+m^2+m=0
Δ=(2m+2)^2-4(m^2+m)
=4m^2+8m+4-4m^2-4m=4m+4
Để (P) cắt Ox tại hai điểm phân biệt thì 4m+4>0
=>m>-1
\(\left|x_1-x_2\right|=\sqrt{5}\)
=>\(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=\sqrt{5}\)
=>(2m+2)^2-4(m^2+m)=5
=>4m^2+8m+4-4m^2-4m=5
=>4m+4=5
=>m=1/4
Pt hoành độ giao điểm: \(x^2-2mx+m=2x-1\)
\(\Leftrightarrow x^2-2\left(m+1\right)x+m+1=0\)
\(\Delta'=\left(m+1\right)^2-\left(m+1\right)>0\Leftrightarrow\left[{}\begin{matrix}m>0\\m< -1\end{matrix}\right.\) (1)
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m+1\end{matrix}\right.\)
\(x_1^2+x_2^2\le12\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\le12\)
\(\Leftrightarrow4\left(m+1\right)^2-2\left(m+1\right)-12\le0\)
\(\Leftrightarrow2m^2+3m-5\le0\Rightarrow-\frac{5}{2}\le m\le1\) (2)
Kết hợp (1); (2) \(\Rightarrow\left[{}\begin{matrix}-\frac{5}{2}\le m< -1\\0< m\le1\end{matrix}\right.\)
\(\Delta=\left(m+2\right)^2-4\left(m^2+1\right)>0\Rightarrow-3m^2+4m>0\Rightarrow0< m< \frac{4}{3}\)
Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1x_2=m^2+1\end{matrix}\right.\)
\(A=x_1^3+x_2^3+x_1^2+x_2^2\)
\(=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)+\left(x_1+x_2\right)^2-2x_1x_2\)
\(=\left(m+2\right)^3-3\left(m^2+1\right)\left(m+2\right)+\left(m+2\right)^2-2\left(m^2+1\right)\)
\(=-2m^3-m^2+13m+4\)
Bạn coi lại đề, biểu thức trên ko có GTLN hay GTNN trên khoảng \(\left(0;\frac{4}{3}\right)\)
- Xét phương trình hoành độ giao điểm :
\(x^2-3mx+m^2+1=mx+m^2\)
\(\Leftrightarrow x^2-4mx+1=0\) ( 1 )
Có : \(\Delta^,=4m^2-1\)
- Để (d) cắt ( P ) tại 2 điểm phân biệt trên trục hoành
<=> Phương trình ( 1 ) có 2 nghiệm phân biệt .
<=> \(\Delta^,=4m^2-1\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}m\le-\dfrac{1}{2}\\m\ge\dfrac{1}{2}\end{matrix}\right.\)
- Theo viets : \(\left\{{}\begin{matrix}x_1+x_2=4m\\x_1x_2=1\end{matrix}\right.\)
( đến đây giải nốt nhá hình như thiếu đề đoạn thỏa mãn :vvv )