Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giả sử \(\frac{p_1+p_2}{2}\)là số nguyên tố
=>p1+p2=2d(d là số nguyên tố)
=>p2.2<2d=>p2<d
và p1.2>2d=>p1>d
=>d là số nguyên tố nằm giữa p1 và p2 (rái giả thuyết)
\(\Rightarrow\frac{p_1+p_2}{2}\)là hợp số
\(\RightarrowĐPCM\)
\(a=p_1^m.p_2^n\Rightarrow a^3=p_1^{3m}.p_2^{3m}.\) Số ước của \(a^3\)là ( 3m + 1 ) ( 3n + 1 ) = 40 , suy ra m = 1 , n = 3 ( hoặc m = 3 , n = 1 )
Số \(a^2=p_1^{2m}.p_2^{2n}\) có số ước là ( 2m + 1 ) ( 2n + 1 ) = 3 . 7 = 21 ( ước )
ủng hộ mk nhé k nhiều vô .
TH1: các số pi đều lớn hơn 2
do pi nguyên tố => pi có dạng 4n+1 hoặc 4n+3
=> pi2 chia 4 luôn dư 1
p12 + p22 + ... +p72 chia 4 dư 3
hay VT có dạng 4k+3
Mà VP là p82 ( với p8 là số chính phương ) có dạng 4t+1
=>TH1 vô nghiệm
TH2. có 1 số nguyên tố chẵn (=2) , các số còn lại lẻ
Giả sử số nguyên tố chẵn đó là p12 , khi đó VT là một chẵn VT >2
=> p8 phải là số chẵn => p8= 2 . Vì VT >2 , VP = 2
Vậy trường hợp này loại
TH3. số số p2 =2 là số chẵn ,giả sử có 2 số p1,p2
Khi đó p12 +p22 chia hết cho 8
=> p32 + p42 + ... + p72 chia 8 dư 7 => VT chia 8 dư 7
mà VP= p82 chia 8 dư 1
=> TH3 vô nghiệm
TH4: VT có 6 số = 2 , 1 số >2 , giả sử p1=p2 = ... =p6 =2 ,p7 > 2
24 + p72 =p82
giải hệ nghiệm nguyên
sau đó suy ra p7=5 , p8= 7
vậy các số cần tìm là 2,2,2,2,2,2,5,7