K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
20 tháng 7 2016
\(a=p_1^m.p_2^n\Rightarrow a^3=p_1^{3m}.p_2^{3m}.\) Số ước của \(a^3\)là ( 3m + 1 ) ( 3n + 1 ) = 40 , suy ra m = 1 , n = 3 ( hoặc m = 3 , n = 1 )
Số \(a^2=p_1^{2m}.p_2^{2n}\) có số ước là ( 2m + 1 ) ( 2n + 1 ) = 3 . 7 = 21 ( ước )
ủng hộ mk nhé k nhiều vô .
30 tháng 5 2015
giả sử \(\frac{p_1+p_2}{2}\)là số nguyên tố
=>p1+p2=2d(d là số nguyên tố)
=>p2.2<2d=>p2<d
và p1.2>2d=>p1>d
=>d là số nguyên tố nằm giữa p1 và p2 (rái giả thuyết)
\(\Rightarrow\frac{p_1+p_2}{2}\)là hợp số
\(\RightarrowĐPCM\)
BM
0
NQ
0
TH1: các số pi đều lớn hơn 2
do pi nguyên tố => pi có dạng 4n+1 hoặc 4n+3
=> pi2 chia 4 luôn dư 1
p12 + p22 + ... +p72 chia 4 dư 3
hay VT có dạng 4k+3
Mà VP là p82 ( với p8 là số chính phương ) có dạng 4t+1
=>TH1 vô nghiệm
TH2. có 1 số nguyên tố chẵn (=2) , các số còn lại lẻ
Giả sử số nguyên tố chẵn đó là p12 , khi đó VT là một chẵn VT >2
=> p8 phải là số chẵn => p8= 2 . Vì VT >2 , VP = 2
Vậy trường hợp này loại
TH3. số số p2 =2 là số chẵn ,giả sử có 2 số p1,p2
Khi đó p12 +p22 chia hết cho 8
=> p32 + p42 + ... + p72 chia 8 dư 7 => VT chia 8 dư 7
mà VP= p82 chia 8 dư 1
=> TH3 vô nghiệm
TH4: VT có 6 số = 2 , 1 số >2 , giả sử p1=p2 = ... =p6 =2 ,p7 > 2
24 + p72 =p82
giải hệ nghiệm nguyên
sau đó suy ra p7=5 , p8= 7
vậy các số cần tìm là 2,2,2,2,2,2,5,7
Hoang Thiên DiBạn giải hay copy vậy