Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét (I) có
ΔPMN nội tiếp đường tròn(P,M,N\(\in\)(I))
MN là đường kính(gt)
Do đó: ΔPMN vuông tại P(Định lí)
mà PM=PN(P là điểm chính giữa của (I))
nên ΔPMN vuông cân tại P
\(\Leftrightarrow\widehat{PMN}=45^0\)
hay \(\widehat{SMN}=45^0\)
Xét ΔSNM vuông tại N có \(\widehat{SMN}=45^0\)(cmt)
nên ΔSNM vuông cân tại N(Dấu hiệu nhận biết tam giác vuông cân)
hay NS=NM(Hai cạnh bên)
Ta có: BA, BN là tiếp tuyến (O)
⇒ OB là phân giác \(\widehat{OAN}\)
Mà △ OAN cân tại O ( vì OA = ON )
⇒ OB ⊥ AN ( đpcm )
b) Ta có: \(\widehat{MAN}=90^0\) ( vì \(\widehat{MAN}\) là góc nội tiếp chắn nửa đường tròn)
⇒ MC ⊥ AN
Mà AN ⊥ OB
⇒ MC // OB
Xét △ NMC có
MC // OB
O là trung điểm MN
⇒ OB là đường phân giác △ NMC
⇒ B là trung điểm CN
a) Ta có OM, ON lần lượt là tia phân giác của AOP, BOP (tính chất của hai tiếp tuyến cắt nhau).
Mà AOP kề bù với BOP nên suy ra OM vuông góc với ON.
Vậy ΔMON vuông tại O.
Góc là góc nội tiếp chắn nửa đường tròn nên = 900
Tứ giác AOPM có:
Suy ra, tứ giác AOPM nội tiếp đường tròn.
Xét ∆ MON và ∆ APB có:
=> Hai tam giác MON và APB đồng dạng
a, Sử dụng các tứ giác nội tiếp chứng minh được P M O ^ = P A O ^ và P N O ^ = P B O ^ => ∆MON và ∆APB đồng dạng (g.g)
b, Theo tính chất hai tiếp tuyến cắt nhau ta có: MP = MA và NP = NB
Mặt khác MP.NP = P O 2 và PO = R Þ AM.BN = R 2 (ĐPCM)
c, Ta có A M = R 2 => M P = R 2
Mặt khác A M = R 2 => BN = 2R => PN = 2R
Từ đó tìm được MN = 5 R 2
Vì DMON và DAPB đồng dạng nên S M O N S A P B = M N A B 2 = 25 16
d, Khi quay nửa đường tròn đường kính AB xung quanh AB ta được hình cầu với tâm O và bán kính R' = OA = R
Thể tích hình cầu đó là V = 4 3 πR 3 (đvdt)
a: Xét (O) có
CM là tiếp tuyến
CA là tiếp tuyến
Do đó: CM=CA và OC là tia phân giác của góc MOA(1)
Xét (O) có
DM là tiếp tuyến
DB là tiếp tuyến
Do đó: DM=DB và OD là tia phân giác của góc MOB(2)
Từ (1) và (2) suy ra \(\widehat{COD}=\dfrac{1}{2}\left(\widehat{MOA}+\widehat{MOB}\right)=\dfrac{1}{2}\cdot180^0=90^0\)
hay ΔCOD vuông tại O
b: Xét ΔCOD vuông tại O có OM là đường cao
nên \(MC\cdot MD=MO^2=R^2=AC\cdot BD\)