K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 1

a. Em tự giải

b.

Ta có: \(EA=EM\) (t/c hai tiếp tuyến cắt nhau)

\(OA=OM=R\)

\(\Rightarrow OE\) là trung trực của AM

\(\Rightarrow OE\perp AM\Rightarrow\widehat{OPM}=90^0\)

Chứng minh tương tự ta có \(OF\perp BM\Rightarrow\widehat{OQM}=90^0\)

AB là đường kính \(\Rightarrow\widehat{AMB}\) là góc nt chắn nửa đường tròn \(\Rightarrow\widehat{AMB}=90^0\)

\(\Rightarrow\) Tứ giác MPOQ là hình chữ nhật (tứ giác có 3 góc vuông)

c.

Kéo dài BM cắt Ax tại C

Do \(OE||BC\) (cùng vuông góc AM), mà O là trung điểm AB

\(\Rightarrow OE\) là đường trung bình tam giác ABC

\(\Rightarrow E\) là trung điểm AC \(\Rightarrow AE=CE\)

Áp dụng định lý Talet trong tam giác BAE:

\(\dfrac{KH}{AE}=\dfrac{BK}{BE}\)

Áp dụng định lý Talet trong tam giác BEC:

\(\dfrac{MK}{CE}=\dfrac{BK}{BE}\)

\(\Rightarrow\dfrac{KH}{AE}=\dfrac{MK}{CE}\Rightarrow KH=MK\)

NV
13 tháng 1

loading...

10 tháng 11 2016

Câu a, b nhìn vô là thấy nên chỉ làm câu c thôi nhé

Δ BHK ≈ Δ BAE (g.g.g)

\(\Rightarrow\frac{BH}{BA}=\frac{HK}{AE}\left(1\right)\)

Δ BMH ≈ Δ OEA (g.g.g) 

\(\Rightarrow\frac{BH}{OA}=\frac{MH}{EA}\left(2\right)\)

Lấy (1) chia (2) được:

\(\frac{OA}{BA}=\frac{HK}{MH}=\frac{1}{2}\Rightarrow MK=KH\)

a: góc EAO+góc EMO=180 độ

=>EAOM nội tiếp

b: góc AMB=1/2*sđ cung AB=90 độ

Xét (O) co

EM,EA là tiếptuyến

=>EM=EA

mà OM=OA

nên OE là trung trực của AM

=>OE vuông góc AM tại P

Xét (O) có

FM,FB là tiếptuyến

=>FM=FB

=>OF là trung trực của MB

=>OF vuông góc MB tại Q

góc MPO=góc MQO=góc PMQ=90 độ

=>MPOQ là hình chữ nhật

NV
10 tháng 4 2022

Gọi I là tâm đường tròn nội tiếp EOF, C và D lần lượt là tiếp điểm của (I) với OE và OF

Tứ giác ICOD là hình chữ nhật (có 3 góc vuông)

Mà \(IC=ID=r\Rightarrow ICOD\) là hình vuông

\(S_{IEF}+S_{IEO}+S_{IFO}=\dfrac{1}{2}\left(IG.EF+IC.EO+ID.FO\right)\)

\(=\dfrac{1}{2}r\left(EF+EO+FO\right)\) (do \(IG=IC=ID=r\))

\(=S_{OEF}=\dfrac{1}{2}OM.EF=\dfrac{1}{2}R.EF\)

\(\Rightarrow\dfrac{r}{R}=\dfrac{EF}{EF+OE+OF}>\dfrac{EF}{EF+EF+EF}=\dfrac{1}{3}\)

(do tam giác OEF vuông nên \(OE< EF;OF< EF\))

NV
10 tháng 4 2022

undefined

31 tháng 8 2019

viết đề sai rùi bạn

b) chứng minh tứ giác POMQ LÀ hình chữ nhật chứ ko phải chứng minh AQMO LÀ HÌNH CHỮ NHẬT OK