\(n\in Z\). CMR \(n^3+2\)không chia hết cho 2016

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2019

a,(2n+4).2=4(n+2) chia hwtc ho 8

8 tháng 10 2019

a) \(\left(n+3\right)^2-\left(n-1\right)^2\)

\(=\left(n+3+n-1\right)\left(n+3-n+1\right)\)

\(=\left(2n+2\right)4\)

\(=2\left(n+1\right).4\)

\(=8\left(n+1\right)⋮8\) 

=> đpcm

30 tháng 7 2016

ta chứng minh nó chia hết cho 3 và 8

30 tháng 7 2016

ai chả bt ngon giải ik 

17 tháng 11 2016

Tự túc là hạnh phúc

17 tháng 11 2016

Ta có

\(n^n-n^2+n-1\)

= (n n - 1) + (- n2 + n)

= (n - 1)(n n-1 + n n-2 +...+ n + 1) - n(n - 1)

= (n - 1)(n n-1 + n n-2 +...+ n2 + 1)

= (n - 1)[(n n-1 - 1) + (n n-2 - 1) + ... + (n2 - 1) + n - 2 + 1]

= (n - 1)[(n n-1 - 1) + (n n-2 - 1) + ... + (n2​ - 1) + n - 1]

= (n - 1)2 A(n) (biểu diễn vậy cho gọn nha)

Vậy \(n^n-n^2+n-1\)chia hết cho (n - 1)2

23 tháng 11 2019

1: chứng minh \(n^3-n⋮6\)

Ta có: \(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\)

Ta có: \(n\cdot\left(n-1\right)⋮2\forall n\)

\(\Rightarrow\left(n-1\right)n\left(n+1\right)⋮3\forall n\)

mà 2 và 3 là hai số nguyên tố cùng nhau

nên \(\left(n-1\right)n\left(n+1\right)⋮2\cdot3\)

hay \(\left(n-1\right)n\left(n+1\right)⋮6\forall n\)

\(n^3-n⋮6\forall n\in Z\)

2: Chứng minh \(n^5-n\) chia hết cho 30 với mọi n∈Z

Ta có: \(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)\)

\(=n\cdot\left(n+1\right)\left(n-1\right)\cdot\left(n^2+1\right)\)

Ta có: \(n\cdot\left(n-1\right)⋮2\forall n\)

\(\Rightarrow\left(n-1\right)n\left(n+1\right)⋮3\forall n\)

mà 2 và 3 là hai số nguyên tố cùng nhau

nên \(\left(n-1\right)n\left(n+1\right)⋮2\cdot3\)

hay \(\left(n-1\right)n\left(n+1\right)⋮6\forall n\)

\(n\cdot\left(n+1\right)\left(n-1\right)\cdot\left(n^2+1\right)⋮6\forall n\in Z\)

\(n^5-n⋮6\forall n\in Z\)(1)

Ta có: 5 là số nguyên tố(vì 5 là một số tự nhiên>1 và chỉ có 2 ước là 1 và chính nó)

nên Áp dụng định lí nhỏ fermat vào đa thức \(n^5-n\), ta được

\(n^5-n⋮5\forall n\in Z\)(2)

Ta lại có: 5 và 6 là hai số nguyên tố cùng nhau(3)

Từ (1),(2) và (3) suy ra \(n^5-n⋮30\forall n\in Z\)(đpcm)

24 tháng 11 2019

Mik chưa hc định lí Fermat nhé bn

4 tháng 10 2016

bạn xem lại đề

ta thử n=1 hiển nhiên n2+n+1=3 chia  hết cho 3

20 tháng 7 2017

dễ mà tự làm đi

3 tháng 9 2016

\(n^2\left(n+1\right)+2n\left(n+1\right)=n\left(n+1\right)\left(n+2\right)\)

Vì n(n+1)(n+2) là tích của 3 số tự nhiên liên tiếp nên chia hết cho cả 2 và 3 . Mà (2,3) = 1 nên n(n+1)(n+2) chia hết cho 6.

Từ đó có đpcm

3 tháng 9 2016

\(n^2\left(n+1\right)+2n\left(n+1\right)=n\left(n+1\right)\left(n+2\right)⋮6\)

=>đpcm