\(n\in Z\), phân tích thành nhân tử rồi CMR:

\(n^3-n\)<...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2019

1: chứng minh \(n^3-n⋮6\)

Ta có: \(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\)

Ta có: \(n\cdot\left(n-1\right)⋮2\forall n\)

\(\Rightarrow\left(n-1\right)n\left(n+1\right)⋮3\forall n\)

mà 2 và 3 là hai số nguyên tố cùng nhau

nên \(\left(n-1\right)n\left(n+1\right)⋮2\cdot3\)

hay \(\left(n-1\right)n\left(n+1\right)⋮6\forall n\)

\(n^3-n⋮6\forall n\in Z\)

2: Chứng minh \(n^5-n\) chia hết cho 30 với mọi n∈Z

Ta có: \(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)\)

\(=n\cdot\left(n+1\right)\left(n-1\right)\cdot\left(n^2+1\right)\)

Ta có: \(n\cdot\left(n-1\right)⋮2\forall n\)

\(\Rightarrow\left(n-1\right)n\left(n+1\right)⋮3\forall n\)

mà 2 và 3 là hai số nguyên tố cùng nhau

nên \(\left(n-1\right)n\left(n+1\right)⋮2\cdot3\)

hay \(\left(n-1\right)n\left(n+1\right)⋮6\forall n\)

\(n\cdot\left(n+1\right)\left(n-1\right)\cdot\left(n^2+1\right)⋮6\forall n\in Z\)

\(n^5-n⋮6\forall n\in Z\)(1)

Ta có: 5 là số nguyên tố(vì 5 là một số tự nhiên>1 và chỉ có 2 ước là 1 và chính nó)

nên Áp dụng định lí nhỏ fermat vào đa thức \(n^5-n\), ta được

\(n^5-n⋮5\forall n\in Z\)(2)

Ta lại có: 5 và 6 là hai số nguyên tố cùng nhau(3)

Từ (1),(2) và (3) suy ra \(n^5-n⋮30\forall n\in Z\)(đpcm)

24 tháng 11 2019

Mik chưa hc định lí Fermat nhé bn

8 tháng 10 2019

a,(2n+4).2=4(n+2) chia hwtc ho 8

8 tháng 10 2019

a) \(\left(n+3\right)^2-\left(n-1\right)^2\)

\(=\left(n+3+n-1\right)\left(n+3-n+1\right)\)

\(=\left(2n+2\right)4\)

\(=2\left(n+1\right).4\)

\(=8\left(n+1\right)⋮8\) 

=> đpcm

16 tháng 2 2019

1) \(x^3+6x^2+11x+6\)

\(=x^3+x^2+5x^2+5x+6x+6\)

\(=x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+5x+6\right)\)

\(=\left(x+1\right)\left(x^2+2x+3x+6\right)\)

\(=\left(x+1\right)\left(x+2\right)\left(x+3\right)\)

17 tháng 2 2019

2) \(A=n^3\left(n^2-7\right)^2-36n\)

\(A=n\left[n^2\left(n^2-7\right)^2-36\right]\)

\(A=n\left\{\left[n\left(n^2-7\right)\right]^2-6^2\right\}\)

\(A=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)

\(A=n\left(n^3-7n-6\right)\left(n^3-n-6n+6\right)\)

\(A=n\left(n^3-7n-6\right)\left[n\left(n-1\right)\left(n+1\right)-6\left(n-1\right)\right]\)

\(A=n\left(n^3-7n-6\right)\left(n-1\right)\left(n^2+n-6\right)\)

\(A=n\left(n-1\right)\left(n^3-7n-6\right)\left(n^2+3n-2n-6\right)\)

\(A=n\left(n-1\right)\left(n^3-7n-6\right)\left[n\left(n+3\right)-2\left(n+3\right)\right]\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n^3-7n-6\right)\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n^3-n-6n-6\right)\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left[n\left(n-1\right)\left(n+1\right)-6\left(n+1\right)\right]\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n+1\right)\left(n^2+n-6\right)\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n+1\right)\left(n^2+3n-2n-6\right)\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n+1\right)\left[n\left(n+3\right)-2\left(n+3\right)\right]\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n+1\right)\left(n+3\right)\left(n-2\right)\)

\(A=\left(n-1\right)n\left(n+1\right)\left(n-2\right)^2\left(n+3\right)^2\)

Rồi sao nữa còn nghĩ :))

9 tháng 10 2016

1, a, = (3x+15-x+7 )( 3x+15+x-7)

= ( 2x +22)( 4x+8)

=8( x+11)( x+2)

b, = ( 5x-5y-4x - 4y)(5x-5y+4x+4y)

=(x-9y)(x-y)

2.a,ta có : (n+6)2- (n-6)2 = (n+6-n+6)( n+6+n-6) = 12.2n=24n chia hết cho 24 ( vì 24 chia hết cho 24) (ĐPCM)

b,

Ta có: n^3+3.n^2-n-3=n^2.(n+3) -(n+3)=(n+3).(n-1).(n+1).
-Do n là số lẻ nên đặt n=2k+1.(k thuộc N).
=> n^3+3.n^2-n-3= (2k+4).2k.(2k+2)= 8.k.(k+1).(k+2).
-Do k(k+1) là tích 2 số tự nhiên liên tiếp nên k(k+1) chia hết cho 2 và k(k+1)(k+2) là tích 3 số tự nhiên liên tiếp nên k(k+1)(k+2) chia hết cho 3.
=> 8k(k+1)(k+2) chia hết cho 16 và chia hết cho 3. Mà (16,3)=1.
=> 8k(k+1)(k+2) chia hết cho 16.3.
=> n^3+3.n^2-n-3 chia hết cho 48 với mọi n là số tự nhiên lẻ (đpcm). 

1: Vì 7 là số nguyên tố nên \(n^7-n⋮7\)

2: \(A=n^3+11n\)

\(=n^3-n+12n\)

\(=n\left(n-1\right)\left(n+1\right)+12n⋮6\)

3: \(=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)⋮6\)

14 tháng 2 2020

các bác giúp mik vs!!!

27 tháng 11 2016

Ta có: a3b−ab3=a3b−ab−ab3+ab=ab(a2−1)−ab(b2−1)

=b(a−1)a(a+1)−a(b−1)b(b+1)

Do tích của 3 số tự nhiên liên tiếp thì chia hết cho 6

=> b(a−1)a(a+1);a(b−1)b(b+1)6a3bab36a3b−ab36

 

27 tháng 11 2016

mk chưa đk hok đến dạng này , còn phần b chắc cx như phần a thôy , pjo mk có vc bận nên tối về mk sẽ lm típ nha

17 tháng 11 2016

Tự túc là hạnh phúc

17 tháng 11 2016

Ta có

\(n^n-n^2+n-1\)

= (n n - 1) + (- n2 + n)

= (n - 1)(n n-1 + n n-2 +...+ n + 1) - n(n - 1)

= (n - 1)(n n-1 + n n-2 +...+ n2 + 1)

= (n - 1)[(n n-1 - 1) + (n n-2 - 1) + ... + (n2 - 1) + n - 2 + 1]

= (n - 1)[(n n-1 - 1) + (n n-2 - 1) + ... + (n2​ - 1) + n - 1]

= (n - 1)2 A(n) (biểu diễn vậy cho gọn nha)

Vậy \(n^n-n^2+n-1\)chia hết cho (n - 1)2