K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2018

Đặt 3n+19=(3x+1)2= 32x+2.3x+1 <=> 3n=32x+2.3x-18 <=> 3n=32.(32x-2+2.3x-2-2)

Vì 3n chia hết cho 3 ( n thuộc N*) => 32x-2+2.3x-2-2 chia hết cho 3 ( x>2 vì n thuộc N)

=> 32x-2+2.(3x-2-1) => 3x-2-1 chia hết cho 3 => 3x-2=1 => x=2 => n=4

NV
30 tháng 1 2022

\(n^2+3n=k^2\)

\(\Leftrightarrow4n^2+12n=4k^2\)

\(\Leftrightarrow\left(2n+3\right)^2-9=\left(2k\right)^2\)

\(\Leftrightarrow\left(2n+3\right)^2-\left(2k\right)^2=9\)

\(\Leftrightarrow\left(2n-2k+3\right)\left(2n+2k+3\right)=9\)

Phương trình ước số cơ bản

15 tháng 1 2021

25 tháng 5 2021

Do 2n+1 là số chính phương lẻ nên 2n+1 : 8 dư 1

=> 2n chia hết cho 8

=> n chia hết cho 4

=> n chẵn

=> 3n chẵn

=> 3n+1 lẻ

=> 3n+1 chia 8 dư 1

=> 3n chia hết cho 8

=> n chia hết cho 8    (1)

Có: 3n+1 là số chính phương => 3n+1 chia 5 dư 0;1;4

=> 3n chia 5 dư 4;3 hoặc chia hết cho 5

=> n chia 5 dư 3;1 hoặc chia hết cho 5

- Xét n : 5 dư 3 => 2n+1 chia 5 dư 2 (Loại)

- Xét n : 5 dư 1 => 2n+1 chia 5 dư 3 (Loại)

- Xét n chia hết cho 5 => 2n+1 chia 5 dư 1 (Thỏa mãn)

=> n chia hết cho 5   (2)

Từ (1) và (2) suy ra n chia hết cho 40

Ta tìm được n=40 để 2n+1 và 3n+1 đều là số chính phương

P/s: Vậy n=40 chỉ là số nguyên dương nhỏ nhất thỏa mãn đề bài

3 tháng 4 2020

1. Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath

4 tháng 7 2016

Bài nè không bít có được vào CÂU HỎI HAY của OLM không?

1./ Dễ thấy: \(A=3^n+19\)là 1 số chẵn. Nên để A là số chính phương thì A phải chia hết cho 4.

19 chia 4 dư 3 => \(3^n\)chia 4 dư 1 (1)

  • Nếu n lẻ = 2i + 1 thì: \(3^{2i+1}=3\cdot\left(3^2\right)^i=3\cdot\left(8+1\right)^i\)chia 4 dư 3 trái với khẳng định (1)
  • Vậy n chẵn và có dạng n = 2k.

2./ Bài toán trở thành tìm k để: \(A=3^{2k}+19\)là số chính phương.

Viết lại A ở dạng: \(A=\left(3^k\right)^2+19\)

  • k = 0 => A = 20 không phải là số chính phương
  • k = 1 => A = 28 không phải là số chính phương
  • k = 2 => A = 100 là số chính phương 102
  • k >= 3 thì:

\(\left(3^k\right)^2< \left(3^k\right)^2+19=A< \left(3^k\right)^2+2\cdot3^k+1=\left(3^k+1\right)^2\)

A kẹp giữa 2 số chính phương liên tiếp 3k và 3k + 1 nên A không phải là số chính phương.

3./ Kết luận, với duy nhất n = 2k = 4 thì 3n + 19 là số chính phương.

5 tháng 3 2017

-6;(-1);5 

21 tháng 11 2016

giả sử n^2+n+2=k^2=> k^2>n^2<==>k>n (1) 
ta có n^2+n-2=k^2-4 
<==>(n-1)(n+2)=(k-2)(k+2) (2) 
@ nếu n=1 , k=2, đúng 
@ nếu n khác 1 
ta có n+2<k+2 (từ (1)) 
==> để (2) xẩy ra thì: n-1>k-2 
mà từ (1) ta có k-1>n-1 
nên: k-1>n-1>k-2 
do k-1 và k-2 hai hai số tự nhiên liên tiếp nên không thể tồn tại số tự nhiên nằm giữa chúng (n-1) 
vậy chỉ có n=1 là nghiệm!

22 tháng 11 2016

thanks nha