Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện \(\hept{\begin{cases}x\ge0\\y\ge0\end{cases}}\)
\(1+\sqrt{x+y+3}=\sqrt{x}+\sqrt{y}\)
\(\Leftrightarrow\sqrt{x+y+3}=\sqrt{x}+\sqrt{y}-1\) (\(\sqrt{x}+\sqrt{y}-1>0\))
\(\Leftrightarrow\sqrt{x}+\sqrt{y}-\sqrt{xy}+1=0\)
\(\Leftrightarrow\sqrt{x}+\sqrt{y}=\sqrt{xy}-1\) (\(\sqrt{xy}-1>0\))
\(\Leftrightarrow\left(\sqrt{x}+\sqrt{y}\right)^2=\left(\sqrt{xy}-1\right)^2\)
\(\Leftrightarrow4\sqrt{xy}=x+y-xy-1\)
Vì x, y nguyên nên \(\sqrt{xy}\) cũng phải nguyên
\(\Rightarrow\sqrt{x}+\sqrt{y}=\sqrt{xy}-1\) nguyên (1)
Ta lại có:
\(x-y=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)\)
\(\Rightarrow\sqrt{x}-\sqrt{y}\) nguyên (2)
Lấy (1) + (2) và (1) - (2) ta có:
\(\hept{\begin{cases}\sqrt{x}+\sqrt{y}+\sqrt{x}-\sqrt{y}=2\sqrt{x}\\\sqrt{x}+\sqrt{y}-\sqrt{x}+\sqrt{y}=2\sqrt{y}\end{cases}}\)
\(\Rightarrow\sqrt{x},\sqrt{y}\) là số nguyên
Vậy x, y là bình phương đúng của 1 số nguyên.
\(Ta-có:\left(x+y+2\right)^2\ge A=\left(x+y\right)^2+3x+y\ge\left(x+y\right)^2=>A=\left(x+y+1\right)^2=>y+1=x.\\ \\ \\ \)Vậy : \(y^5+1=\left(y+1\right)\left(....\right)=x\left(...\right)chia-het-cho-x\\ \\ \\ \)Mình ấn \\ hơi quá tay,ahihi.