Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
theo mình thì không thể như thế được ví dụ nhé m=4 không chia hết cho 3 còn n=3 thì
\(4^2-3^2=7\) không chia hết cho 3 còn gì
a/ \(m^3-m=m\left(m^2-1\right)=m\left(m-1\right)\left(m+1\right)\)
Đây là 3 số nguyên liên tiếp nên chia hết cho 6
Bài 1:
$a^2-1=(a-1)(a+1)$
Vì $a$ là số nguyên tố lớn hơn $3$ nên $a$ không chia hết cho $3$. Suy ra $a$ chia $3$ dư $1$ hoặc $2$
Nếu $a$ chia $3$ dư $1\Rightarrow a-1\vdots 3\Rightarrow a^2-1=(a-1)(a+1)\vdots 3$
Nếu $a$ chia $3$ dư $2\Rightarrow a+1\vdots 3\Rightarrow a^2-1=(a-1)(a+1)\vdots 3$
Vậy $a^2-1\vdots 3(1)$
Mặt khác, $a$ là số nguyên tố lớn hơn $3$ thì $a$ lẻ. Do đó $a$ có dạng $4k+1$ hoặc $4k+3$ ($k\in\mathbb{Z}$)
Nếu \(a=4k+1\Rightarrow a^2-1=(4k+1)^2-1=16k^2+8k\vdots 8\)
Nếu \(a=4k+3\Rightarrow a^2-1=(4k+3)^2-1=16k^2+24k+8\vdots 8\)
Vậy $a^2-1\vdots 8(2)$
Từ $(1);(2)$ mà $(3,8)=1$ nên $a^2-1\vdots 24$ (đpcm)
Bài 2:
Từ bài 1 ta thấy rằng với mọi số $a$ là số nguyên tố lớn hơn 3 thì $a^2-1\vdots 24(1)$
Tương tự $b^2-1\vdots 24(2)$
Từ \((1);(2)\Rightarrow (a^2-1)-(b^2-1)\vdots 24\)
\(\Leftrightarrow a^2-b^2\vdots 24\) (đpcm)
1: Vì 7 là số nguyên tố nên \(n^7-n⋮7\)
2: \(A=n^3+11n\)
\(=n^3-n+12n\)
\(=n\left(n-1\right)\left(n+1\right)+12n⋮6\)
3: \(=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)⋮6\)
dat m = 3k + r voi 0 \(\le\)r \(\le\) 2 va n = 3t + s
=> xm + xn + 1 = x3k + r + x3t +s + 1 = x3k. xr - xr + x3t . xs - xs + xr + xs +1
= xr ( x3t -1) + xs ( x3t - 1) + xr + xs + 1
ta thay: x3k-1 \(⋮\) \(\left(x^2+x+1\right)\)va \(\left(x^{3t}-1\right)⋮\left(x^2+x+1\right)\)
vay \(\left(x^m+x^n+1\right)⋮\left(x^2+x+1\right)\)
\(\Leftrightarrow\left(x^r+x^s+1\right)⋮\left(x^2+x+1\right)\)voi \(0\le r;s\le2\)
\(\Leftrightarrow r=2;x=1\Rightarrow m=3k+2;n=3t+1\)
\(r=1;s=2\Rightarrow m=3k+1;n=3t+2\)
\(\Leftrightarrow mn-2=\left(3k+2\right)\left(3t+1\right)-2=9kt+3k+6t=3\left(3kt+k+2t\right)\)
\(mn-2=\left(3k+1\right)\left(3t+2\right)-2=9kt+6k+3t=3\left(3kt+2k+t\right)\)
\(\Rightarrow\left(mn-2\right)⋮3\)
ap dung: \(m=7;n=2;\Rightarrow mn-2=12⋮3\)
\(\Rightarrow\left(x^7+x^2+1\right)⋮\left(x^2+x+1\right)\)
\(\Rightarrow\left(x^7+x^2+1\right)⋮\left(x^2+x+1\right)=x^5+x^4+x^2+x+1\)
⇒xm+xn+1=x3k+r+x3t+s+1=x3k.xr−xr+x3t.xs−xs+xr+xs+1
=xr(x3t−1)+xs(x3t−1)+xr+xs+1
Ta thấy: (x3k−1)chia hết (x2+x+1)và (x3t−1) chia hết (x2+x+1)
Vậy: (xm+xn+1)chia hết (x2+x+1)
⇔(xr+xs+1)chia hết (x2+x+1)với 0≤r;s≤2
⇔r=2;x=1⇒m=3k+2;n=3t+1
r=1;s=2⇒m=3k+1;n=3t+2
⇔mn−2=(3k+2)(3t+1)−2=9kt+3k+6t=3(3kt+k+2t)
mn−2=(3k+1)(3t+2)−2=9kt+6k+3t=3(3kt+2k+t)
⇒mn−2chia hết cho 3.
Áp dụng:m=7;n=2⇒mn−2=12chia hết cho 3
⇒(x7+x2+1) chia hết cho (x2+x+1)
a: \(=35^{2018}\left(35-1\right)=35^{2018}\cdot34⋮17\)
b: \(=43^{2018}\left(43+1\right)=43^{2018}\cdot44⋮11\)
d: \(=6mn-4m-9n+6-6mn+9m+4n-6\)
=5m-5n=5(m-n) chia hết cho 5
a) Có \(\dfrac{x^4-x^3+6x^2-x+n}{x^2-x+5}\) được thương là x2 +1 và dư n-5
Vậy để đa thức trên chia hết thì n-5 = 0 => n = 5
b) Có \(\dfrac{3x^3+10x^2-5+n}{3x+1}\) được thương là x2 + 3x -1 và dư -4 +n
Vậy để đa thức trên chia hết thì -4 + n = 0 => n = 4
c) Theo đề bài ta có:
\(\dfrac{2n^2+n-7}{n-2}=2n+5+\dfrac{3}{n-2}\)
Với n nguyên để đa thức trên chia hết thì ( n - 2) phải thuộc ước của 3
Từ đó, ta có:
n-2 | n |
-1 | 1 |
1 | 3 |
-3 | -1 |
3 | 5 |
Vậy khi n đạt những giá trị trên thì đa thức trên sẽ chia hết
đè sai rồi nhé
ta có m,n không chi hết cho 3
=>\(\hept{\begin{cases}m^2\equiv1\left(mod3\right)\\n^2\equiv1\left(mod3\right)\end{cases}}\)
=>\(m^2+n^2\equiv2\left(mod3\right)\Rightarrow m^2+n^2̸\) không chia hết cho 3