Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bây giờ mình sẽ trả lời chính câu hỏi của mình để các bạn tham khảo:
Đặt: \(m=3k+r\) với \(0\le r\le2\)và \(n=3t+s\)
\(\Rightarrow x^m+x^n+1=x^{3k+r}+x^{3t+s}+1\)\(=x^{3k}.x^r-x^r+x^{3t}.x^s-x^s+x^r+x^s+1\)
\(=x^r\left(x^{3t}-1\right)+x^s\left(x^{3t}-1\right)+x^r+x^s+1\)
Ta thấy: \(\left(x^{3k-1}\right)\)chia hết \(\left(x^2+x+1\right)\)và \(\left(x^{3t}-1\right)\) chia hết \(\left(x^2+x+1\right)\)
Vậy: \(\left(x^m+x^n+1\right)\)chia hết \(\left(x^2+x+1\right)\)
\(\Leftrightarrow\left(x^r+x^s+1\right)\)chia hết \(\left(x^2+x+1\right)\)với \(0\le r;s\le2\)
\(\Leftrightarrow r=2;x=1\Rightarrow m=3k+2;n=3t+1\)
\(r=1;s=2\Rightarrow m=3k+1;n=3t+2\)
\(\Leftrightarrow mn-2=\left(3k+2\right)\left(3t+1\right)-2=9kt+3k+6t=3\left(3kt+k+2t\right)\)
\(mn-2=\left(3k+1\right)\left(3t+2\right)-2=9kt+6k+3t=3\left(3kt+2k+t\right)\)
\(\Rightarrow mn-2\)chia hết cho \(3\).
Áp dụng:\(m=7;n=2\Rightarrow mn-2=12\)chia hết cho 3
\(\Rightarrow\left(x^7+x^2+1\right)\) chia hết cho \(\left(x^2+x+1\right)\)
\(\Rightarrow\left(x^7+x^2+1\right):\left(x^2+x+1\right)=x^5+x^4+x^2+x+1\)
Bạn chứng minh hộ mình
\(x^{3t}-1\) chia hết cho \(x^2+x+1\) với
![](https://rs.olm.vn/images/avt/0.png?1311)
a)ta có:
\(f\left(x\right):\left(x+1\right)\: dư\: 6\Rightarrow f\left(x\right)-6⋮\left(x+1\right)\\ hay\: 1-a+b-6=0\\ \Leftrightarrow b-a-5=0\Leftrightarrow b-a=5\left(1\right)\)
tương tự: \(2^2+2a+b-3=0\\ 2a+b=-1\left(2\right)\)
từ (1) và(2) => \(\left\{{}\begin{matrix}b-a=5\\2a+b=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-2\\b=3\end{matrix}\right.\)
Câu a :
Theo đề bài ta có hệ phương trình :
\(\left\{{}\begin{matrix}f\left(-1\right)=1-a+b=6\\f\left(2\right)=4+2a+b=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-a+b=5\\2a+b=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-2\\b=3\end{matrix}\right.\)
Vậy đa thức \(f\left(x\right)=x^2-2x+3\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 2:
Ta có:
\(P\left(x\right)=x^{100}+x^2+1\)
\(=x^{100}-x^{99}+x^{98}+x^{99}-x^{98}+x^{97}+...+x^3-x^2+x^2+x^2-x+1\)
\(=x^{98}\left(x^2-x+1\right)+x^{97}\left(x^2-x+1\right)+...+\left(x^2-x+1\right)\)
\(=\left(x^{98}+x^{97}+...+x+1\right)\left(x^2-x+1\right)\)
\(=Q\left(x\right).\left(x^{98}+x^{97}+...+x+1\right)\)
\(\Rightarrow P\left(x\right)⋮Q\left(x\right)\)
Câu 1:
Do P(x) bậc 3 và \(x^2-x+1\) bậc 2 nên đa thức thương có bậc 1, gọi đa thức thương có dạng \(ax+b\)
Do \(P\left(x\right)\) chia hết \(x-1\) và \(x-2\) nên \(P\left(1\right)=P\left(2\right)=0\)
Do \(P\left(x\right)\) chia \(x^2-x+1\) dư \(2x-3\)
\(\Rightarrow P\left(x\right)=\left(ax+b\right).\left(x^2-x+1\right)+2x-3\)
Thay \(x=1\) ta được:
\(P\left(1\right)=\left(a+b\right)\left(1-1+1\right)+2-3=0\)
\(\Leftrightarrow a+b=1\)
Thay \(x=2\) ta được:
\(P\left(2\right)=\left(2a+b\right)\left(4-2+1\right)+4-3=0\)
\(\Leftrightarrow3\left(2a+b\right)=-1\Leftrightarrow6a+3b=-1\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=1\\6a+3b=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{4}{3}\\b=-\frac{7}{3}\end{matrix}\right.\)
\(\Rightarrow P\left(x\right)=\left(\frac{4}{3}x-\frac{7}{3}\right)\left(x^2-x+1\right)+2x-3\)
Bạn có thể nhân phá ra và rút gọn
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 3: mk làm theo cách này: từ A = 8k(k2+503)
Ta có: \(k\left(k^2+503\right)=k\left(k^2+5+6.83\right)\)
\(=k\left(k^2-1+6\right)+6.83k\)
\(=k\left(k^2-1\right)+6k+6.83k\)
\(=\left(k-1\right)k\left(k+1\right)+6\left(k+83k\right)\)
Vì \(\left(k-1\right)k\left(k+1\right)\) gồm tích của 3 số tự nhiên liên tiếp nên chia hết cho 3 và tích của 2 số tự nhiên liên tiếp nên chia hết cho 2.Mà (3,2)=1 nên \(\left(k-1\right)k\left(k+1\right)\) \(⋮2.3=6\). Do đó : \(k\left(k^2+503\right)\) \(⋮\) 6
Vậy A \(⋮\) 8.6=48
í, ngược lại Akai Haruma nhận xét bài mk nhầm mới phải. bạn xem lại thử.Cái này là dạng m\(⋮\)a, n\(⋮\)b \(\Rightarrow mn⋮ab\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: a3b−ab3=a3b−ab−ab3+ab=ab(a2−1)−ab(b2−1)
=b(a−1)a(a+1)−a(b−1)b(b+1)
Do tích của 3 số tự nhiên liên tiếp thì chia hết cho 6
=> b(a−1)a(a+1);a(b−1)b(b+1)⋮6⇒a3b−ab3⋮6⇒a3b−ab3⋮6
mk chưa đk hok đến dạng này , còn phần b chắc cx như phần a thôy , pjo mk có vc bận nên tối về mk sẽ lm típ nha
dat m = 3k + r voi 0 \(\le\)r \(\le\) 2 va n = 3t + s
=> xm + xn + 1 = x3k + r + x3t +s + 1 = x3k. xr - xr + x3t . xs - xs + xr + xs +1
= xr ( x3t -1) + xs ( x3t - 1) + xr + xs + 1
ta thay: x3k-1 \(⋮\) \(\left(x^2+x+1\right)\)va \(\left(x^{3t}-1\right)⋮\left(x^2+x+1\right)\)
vay \(\left(x^m+x^n+1\right)⋮\left(x^2+x+1\right)\)
\(\Leftrightarrow\left(x^r+x^s+1\right)⋮\left(x^2+x+1\right)\)voi \(0\le r;s\le2\)
\(\Leftrightarrow r=2;x=1\Rightarrow m=3k+2;n=3t+1\)
\(r=1;s=2\Rightarrow m=3k+1;n=3t+2\)
\(\Leftrightarrow mn-2=\left(3k+2\right)\left(3t+1\right)-2=9kt+3k+6t=3\left(3kt+k+2t\right)\)
\(mn-2=\left(3k+1\right)\left(3t+2\right)-2=9kt+6k+3t=3\left(3kt+2k+t\right)\)
\(\Rightarrow\left(mn-2\right)⋮3\)
ap dung: \(m=7;n=2;\Rightarrow mn-2=12⋮3\)
\(\Rightarrow\left(x^7+x^2+1\right)⋮\left(x^2+x+1\right)\)
\(\Rightarrow\left(x^7+x^2+1\right)⋮\left(x^2+x+1\right)=x^5+x^4+x^2+x+1\)
⇒xm+xn+1=x3k+r+x3t+s+1=x3k.xr−xr+x3t.xs−xs+xr+xs+1
=xr(x3t−1)+xs(x3t−1)+xr+xs+1
Ta thấy: (x3k−1)chia hết (x2+x+1)và (x3t−1) chia hết (x2+x+1)
Vậy: (xm+xn+1)chia hết (x2+x+1)
⇔(xr+xs+1)chia hết (x2+x+1)với 0≤r;s≤2
⇔r=2;x=1⇒m=3k+2;n=3t+1
r=1;s=2⇒m=3k+1;n=3t+2
⇔mn−2=(3k+2)(3t+1)−2=9kt+3k+6t=3(3kt+k+2t)
mn−2=(3k+1)(3t+2)−2=9kt+6k+3t=3(3kt+2k+t)
⇒mn−2chia hết cho 3.
Áp dụng:m=7;n=2⇒mn−2=12chia hết cho 3
⇒(x7+x2+1) chia hết cho (x2+x+1)