Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(13+x\right)\left(17+x\right)\left(2-x\right)\le0\)
Nếu \(x< -17\), ta có 13 + x < 0, 17 + x \(\le\) 0, 2 - x > 0
Vậy nên A \(>\) 0,
Nếu \(-17\le x\le-13\), ta có: 13 + x < 0 , 17 + x > 0, 12 - x > 0. Vậy thì \(A\le0\)
Nếu \(-13< x< 2\), ta có: 13 + x > 0, 17 + x > 0, 2 - x > 0. Vậy nên \(A>0\)
Nếu \(x\ge2\) , ta có \(13+x>0,17+x>0,2-x\ge0\). Vậy nên \(A\le0\)
Vậy để \(A\le0\) thì \(-17\le x\le-13\) hoặc \(x\ge2.\)
câu a: ta có:
(x+y)=(x-y)=x(x-y)+y(x-y)
=x2 - xy +yx - y2
=(-xy+yx) + x2 - y2 = x2 - y2
Vậy x2 - y2 = (x+y) (x-y)
còn câu b mình hông bik=)))))
\(^{x^2-y^2=x^2+xy-y^2-xy=x\left(x+y\right)-y\left(x+y\right)=\left(x+y\right)\left(x-y\right)..}\)
Đặt \(\hept{\begin{cases}a+b=m\\b+c=n\\c+a=p\end{cases}}\)
Xem VT = A
\(\Rightarrow A=m^2+n^2+p^2-mn-np-mp\)
\(2A=\left(m-n\right)^2+\left(n-p\right)^2+\left(p-m\right)^2\)
\(=\left(a+b-b-c\right)^2+\left(b+c-c-a\right)^2+\left(c+a-a-b\right)^2\)
\(=\left(a-c\right)^2+\left(b-a\right)^2+\left(c-b\right)^2\)
\(=a^2-2ac+c^2+b^2-2ab+a^2+c^2-2bc+b^2\)
\(=2\left(a^2+b^2+c^2-2ab-2bc-2ac\right)\)
\(\Rightarrow A=a^2+b^2+c^2-ab-bc-ca\)(đpcm)
Dấu "=" đâu xảy ra tại đó bạn?
Chứng minh BĐT này đồng thời tìm dấu "=":
- Với \(\left|a\right|< \left|b\right|\Rightarrow\left\{{}\begin{matrix}VT< 0\\VP>0\end{matrix}\right.\) \(\Rightarrow VP>VT\) BĐT hiển nhiên đúng
- Với \(\left|a\right|\ge\left|b\right|\) hai vế ko âm, bình phương 2 vế ta được:
\(a^2+b^2-2\left|ab\right|\le a^2+b^2-2ab\)
\(\Leftrightarrow\left|ab\right|\ge ab\) (luôn đúng)
Dấu "=" xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}ab\ge0\\\left|a\right|\ge\left|b\right|\end{matrix}\right.\)