Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{3}{7}:1=\frac{3}{7}\)
\(\frac{3}{7}:\frac{2}{5}=\frac{3}{7}.\frac{5}{2}=\frac{15}{14}\)
\(\frac{3}{7}:\frac{5}{4}=\frac{3}{7}.\frac{4}{5}=\frac{12}{35}\)
b) + Số chia là 1 =1
+ Số chia là \(\frac{2}{5}\)có tử số =2 bé hơn mẫu số =5 => phân số bé hơn 1
+Số chia là \(\frac{5}{4}\)có tử số = 5 lớn hơn mẫu số = 4 => phân số lớn hơn 1
c) so sánh tương tự câu b nhé bạn.
Ta thấy các số nguyên tố đều là số lẽ trừ 2
Với p là số lẽ =>\(p^2+1\text{ là số chẵn ; }p^4+1\text{ là số chẵn}\)
=>\(p^2+1;p^4+1\text{ không phải là số nguyên tố}\)
=>p không phải là số lẽ =>p=2
a)A=x+3/x-2
A=x-2+5/x-2
A=1+5/x-2
vì 1 thuộc Z nên để A thuộc Z thì 5 phải chia hết cho x-2
x-2 thuộc ước của 5
x-2 thuộc -5;-1;1;5
x = -3;1;3 hoặc 7
giá trị các biểu thức theo giá trị của x như trên và lần lượt là 0;-4;6;2
b)để B= 1-2x/2+x thuộc Z thì
1-2x phải chia hết cho 2+x
nên 1-2x-4+4 phải chia hết cho x+2
1-(2x+4)+4 phải chia hết cho x+2
1+4-[2(x+2] phải chia hết cho x+2
5 -[2(x+2] phải chia hết cho x+2
vì [2(x+2] chia hết cho x+2 nên 5 phải chia hết cho x+2
suy ra x+2 thuộc ước của 5
x+2 thuộc -5;-1;1;5
x=-7;-3;-1;3
giá trị các biểu thức theo giá trị của x như trên và lần lượt là -3;-7;3;-1
Xét tử \(\left|4-x\right|+\left|x+2\right|\ge0\)
Xét mẫu \(\left|x+5\right|+\left|x-3\right|\ge0\)
Do đó \(\frac{\left|4-x\right|+\left|x+2\right|}{\left|x+5\right|+\left|x-3\right|}\ge0\)
Nhưng đề bài cho \(\frac{\left|4-x\right|+\left|x+2\right|}{\left|x+5\right|+\left|x-3\right|}=-\frac{1}{2}<0\) nên không có giá trị nào của x thỏa mãn.
b,(*)chứng minh a=-3b:
xét a-b=2(a+b)
=>a-b=2a+2b
=>-b-2b=2a-a
=>-3b=a (đpcm)
(*) tính a/b :
Từ -3b=a=>a/b=-3
(*)tính a và b:
Ta có : a-b=a/b=-3
và 2(a+b)=a/b=-3
hệ pt<=>a-b=-3
và 2(a+b)=-3
<=>a-b=-3 (1)
và a+b=-1,5 (2)
Lấy (1)+(2),vế theo vế ta đc:
(a-b)+(a+b)=-3+(-1,5)
=>a-b+a+b=-4,5
=>2a=-4,5=>a=-2,25
Mà a-b=-3=>b=0,75
Vậy (a;b)=(-2,25;0,75)
c) vì (x-y2+z)2 >= 0 với mọi x;y;z
(y-2)2 >= 0 với mọi y
(z+3)2 >= 0 với mọi z
=>(x-y2+z)2+(y-2)2+(z+3)2 >= 0 với mọi x;y;z
Mà theo đề: (x-y2+z)2+(y-2)2+(z+3)2=0
=>(x-y2+z)2=(y-2)2=(z+3)2=0
+)(y-2)2=0=>y=2
+)(z+3)2=0=>z=-3
Thay y=2;z=-3 vào (x-y2+z)2=0=>x-22+(-3)2=0=>x=-5
Vậy (x;y;z)=(-5;2;-3)
Từ dãy tỉ số bằng nhau đó, ta được:
\(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)
hay \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}=\frac{4\left(a+b+c+d\right)}{a+b+c+d}=4\)
Do đó, \(\frac{a+b+c+d}{a}=4\) => a=\(\frac{a+b+c+d}{4}\)
\(\frac{a+b+c+d}{b}=4\) =>b=\(\frac{a+b+c+d}{4}\)
\(\frac{a+b+c+d}{c}=4\) =>c=\(\frac{a+b+c+d}{4}\)
\(\frac{a+b+c+d}{d}=4\) => d=\(\frac{a+b+c+d}{4}\)
=>a=b=c=d
a+bc+d
Do đó, M=\(\frac{a+b}{c+d}+\frac{b+c}{c+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}=1+1+1+1=4\)
Vậy M có giá trị là 4
vì 3n^2 chia hết cho 3 nên để A chia hết cho 3 thì ta CM
n^3+2n=n*(n*n+2) vì n là số nguyên nên n có dạng 3k; 3k+1;3k+2(k thuộc Z)
nếu n=3k thì n*(n*n+2) luôn luôn chia hết cho 3
nếu n=3k+1 thì n*n=(3k+1)*(3k+1)=9k^2+3k+3k+1 chia 3 dư 1 nên n*n+2 luôn luôn chia hết cho 3
nếu n=3k+2 thì n*n=(3k+2)*(3k+2)=9k^2+6k+6k+4 chia 3 dư 1 nên n*n+2 luôn luôn chia hết cho 3
vậy biểu thức trên luôn luôn chia hết cho 3 với mọi n thuộcZ
câu b)để A chia hết cho 15 thì n^3+3n^2+2n phải chia hết cho 3;5(vì ƯCLN(3;5)=1)
Mà theo câu a thì A luôn luôn chia hết cho 3 với n thuộc Z
nên ta chỉ cần tìm giá trị của n để A chia hết cho5
để A chia hết cho 5 thì n^3 phải chia hết cho 5;3n^2 phải chia hết cho 5;2n phải chia hết cho 5
nên n phải chia hết cho 5(vì ƯCLN(3;5)=1;ƯCLN(2;5)=1 nên n^3;n^2;n phải chia hết cho 5 nên ta suy ra n phải chia hết cho 5)
mà 1<n<10 nên n=5(n là số nguyên dương)
vậy giá trị của n thỏa mãn đề bài là 5
Đáp án C