K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2016

[(x+y)+z]2 = (x+y)2 +2(x+y).z + z2= x2 + 2xy + y2 + 2xz+ 2yz + z2

người ta đã quy ra (x + y + z) 2  = x2 + y2 + z+ 2xy +2xz+ 2yz 

23 tháng 7 2016

tôi da thay dc cach lam day tri tue cua bn phan van hieu, nghieng minh cam phuc va (đúng 1) cho bn

\(\left(x+y+z\right)^2\)

\(=\left(x+y+z\right)\left(x+y+z\right)\)

\(=x^2+y^2+z^2+2xy+2yz+2xz\)

\(=x^2+y^2+z^2+2\left(xy+yz+xz\right)\)

22 tháng 4 2022

\(x^2+y^2+z^2\ge\dfrac{\left(x+y+z\right)^2}{3}=\dfrac{1^2}{3}=\dfrac{1}{3}\)

-Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{3}\)

22 tháng 4 2022

-Những bài c/m BĐT có phương hướng sử dụng các BĐT đơn giản hơn để c/m:

-Thí dụ: BĐT Caushy:

*Hai số: \(a+b\ge\sqrt{ab}\left(a,b>0\right)\)\("="\Leftrightarrow a=b\).

\(a^2+b^2\ge2ab\) . \("="\Leftrightarrow a=b\)

-Và còn nhiều BĐT khác nữa.....

18 tháng 2 2016

bài đó có dạng

ax4+bx3+cx2+dx+e=0 (Với b=d hoặc b=-d)

Cách làm có nhìu cách tui chỉ rành một cách nên tui chỉ

Với b=d thì đặt t=x2+1

Với b=-d thì đặt t=x2-1

tự nguyên cứu tiếp đi

18 tháng 2 2016

ta xét thấy đây là phương trình đối xứng vì hệ số của các số hạng cách đều số hạng đầu và số hạng cuối bằng nhau (ví dụ 3x4 và 3 có cùng hệ số là 3, -13x3 và -13x có cùng hệ số là -13....)

cụ thể đây là phương trình đối xứng bậc chẵn (số hạng đàu có bậc chẵn là 4)

giải như sau

ta nhẩm thấy 0 không phải là nghiệm của phương trình nên chia cả hai vế cho x2 ta có

      3x2-13x+16-13/x + 3/x=0

<=>(3x^2 + 3/x^2) - (13x + 13/x) +16 =0

<=>3(x^2 + 1/x^2) - 13(x+1/x)=0

đặt x+1/x = a thì x^2+1/x^2=a^2 - 2 (cái này bạn dùng hằng đẳng thức (a+b)^2 để suy ra  nhé)

thay vào ta được

3a - 13(a^2 - 2) +16 = 0

3a - 13a^2 + 26 =0 

đến đây bạn giải a bằng cách đưa về phương trình tích rồi tìm x là xong

22 tháng 7 2021

`(x+y+z+t)(x+y-z-t)`

`=[(x+y)+(z+t)][(x+y)-(z+t)]`

`=(x+y)^2-(z-t)^2`

`=(x+y)^2+[-(z-t)^2]`

22 tháng 7 2021

cảm ơn bạn nhiều <3

17 tháng 7 2021

`B=(x/2+y)^3-6(x/2+y)^2z + 6(x+2y)z^2-8z^3`

`=(x/2+y)^3 - 3. (x/2+y)^2 . 2z + 3. (x/2+y) . (2z)^2 - (2z)^3`

`=(x/2+y-2z)^3`

Sửa đề: Δ\(B=\left(\dfrac{x}{2}+y\right)^3-6\left(\dfrac{x}{2}+y\right)^2z+12\left(x+2y\right)\cdot z^2-8z^3\)

Ta có: \(B=\left(\dfrac{x}{2}+y\right)^3-6\left(\dfrac{x}{2}+y\right)^2z+12\left(x+2y\right)\cdot z^2-8z^3\)

\(=\left(\dfrac{1}{2}x+y\right)^2-3\cdot\left(\dfrac{1}{2}x+y\right)^2\cdot2z+3\cdot\left(\dfrac{1}{2}x+y\right)\cdot\left(2z\right)^2-\left(2z\right)^3\)

\(=\left(\dfrac{1}{2}x+y-2z\right)^3\)

11 tháng 7 2017

Ta có:\(2\left(x-y\right)\left(z-y\right)+2\left(y-z\right)\left(z-x\right)+2\left(y-z\right)\left(x-z\right)\)

\(=2\left[\left(x-y\right)\left(z-y\right)+\left(y-x\right)\left(z-x\right)+\left(y-z\right)\left(x-z\right)\right]\)

\(=2\left[xz-xy-yz+y^2+yz-xy-zx+x^2+yx-yz-zx+z^2\right]\)

\(=2\left[-xz-xy-yz+x^2+y^2+z^2\right]\)

\(=x^2-2xy+y^2+y^2-2yz+z^2+z^2-2zx+x^2\)

\(=\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\)

31 tháng 7 2015

x^2 + y^2 = (x + y +\(\sqrt{2xy}\))(x + y - \(\sqrt{2xy}\))

21 tháng 5 2018
  1. {\displaystyle a^{2}+b^{2}=(a+b)^{2}-2ab=(a-b)^{2}+2ab}
  2. {\displaystyle a^{2}-b^{2}=(a+b)(a-b)}

 các bn tk mk nha .mk cảm ơn nhiều

11 tháng 6 2023

Cậu check lại đề đi xem có nhầm ở đâu không ?

11 tháng 6 2023

`6x` hay `3x` cậu nhỉ nếu `6x thì :

`9/4x^2+6x+4`

`=(3/2x)^2 + 2. 3/2x .2 +2^2`

`=(3/2x+2)^2`

30 tháng 10 2023

1, (\(x\) + 3y)2

\(x^2\) + 2.3\(xy\) + (3y)2

\(x^2\) + 6\(xy\) + 9y2

30 tháng 10 2023

2, (4a + b)2

= (4a)2 + 2.4.a.b + b2

= 16a2 + 8ab + b2