K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2023

1, (\(x\) + 3y)2

\(x^2\) + 2.3\(xy\) + (3y)2

\(x^2\) + 6\(xy\) + 9y2

30 tháng 10 2023

2, (4a + b)2

= (4a)2 + 2.4.a.b + b2

= 16a2 + 8ab + b2

 

a:Sửa đề: \(\dfrac{1}{4}a^2+2ab+4b^2\)

\(=\left(\dfrac{1}{2}a\right)^2+2\cdot\dfrac{1}{2}a\cdot2b+\left(2b\right)^2\)

\(=\left(\dfrac{1}{2}a+2b\right)^2\)

b: Sửa đề:\(y^4-\dfrac{1}{3}y^4+\dfrac{1}{36}\)

\(=y^8-2\cdot y^4\cdot\dfrac{1}{6}+\dfrac{1}{36}\)

\(=\left(y^4-\dfrac{1}{6}\right)^2\)

24 tháng 6 2018

\(x^2-6x+9=x^2-2.3x+3^2=\left(x-3\right)^2\)

\(\frac{1}{4}a^2+2ab^2+4b^4=\left(\frac{1}{2}a\right)^2+2.\frac{1}{2}a.2b^2+\left(2b\right)^2=\left(\frac{1}{2}a+2b\right)^2\)

\(25+10x+x^2=5^2+2.5x+x^2=\left(5+x\right)^2\)

\(\frac{1}{9}-\frac{2}{3}y^4+y^8=\left(\frac{1}{3}\right)^2-2.\frac{1}{3}y^4+\left(y^4\right)^2=\left(\frac{1}{3}-y^4\right)^2\)

24 tháng 6 2018

a,(x-3)^2

b,(1/4x+2b^2)^2

c,(5+x)^2

d,(1/3-y^4)^2

3 tháng 7 2016

Khó nhỉ

26 tháng 7 2017

a) x2 +4x+4 = ( x + 2 )2

b) 16x2 - 8xy + y2 = ( 4x - y )2

c)9a2 +16b2 - 24ab = ( 3a - 4y ) 2

d) x2 - x + \(\dfrac{1}{4}\)= ( x - \(\dfrac{1}{2}\))2

e) y2 + \(\dfrac{1}{2}y\) + \(\dfrac{1}{16}\) = ( y + \(\dfrac{1}{4}\))2

a) Ta có: \(x^2-8x+16\)

\(=x^2-2\cdot x\cdot4+4^2\)

\(=\left(x-4\right)^2\)

b) Ta có: \(16x^2+y^2-8xy\)

\(=\left(4x\right)^2-2\cdot4x\cdot y+y^2\)

\(=\left(4x-y\right)^2\)

c) Ta có: \(49a^2+4b^2+28ab\)

\(=\left(7a\right)^2+2\cdot7a\cdot2b+\left(2b\right)^2\)

\(=\left(7a+2b\right)^2\)

e) Ta có: \(\left(3x-2\right)^2-\left(3x+2\right)^2+4x^2+36\)

\(=\left[\left(3x-2\right)-\left(3x+2\right)\right]\cdot\left[\left(3x-2\right)+\left(3x+2\right)\right]+4\left(x^2+9\right)\)

\(=\left(3x-2-3x-2\right)\left(3x-2+3x+2\right)+4\left(x^2+9\right)\)

\(=-4\cdot6x+4\left(x^2+9\right)\)

\(=4\left(-6x+x^2+9\right)\)

\(=4\left(x^2-6x+9\right)\)

\(=4\left(x-3\right)^2\)

\(=\left(2x-6\right)^2\)

30 tháng 7 2020

tại sao từ x2 - 6x + 9 lại có thể chuyển thành (x-3)2 vậy ạ? (ở câu e ấy)

15 tháng 8 2020

1)

\(=x^2-4x+4+y^2+2y+1\)

\(=\left(x-2\right)^2+\left(y+1\right)^2\)

2)

\(=a^2+2ab+b^2+a^2-2ax+x^2\)

\(=\left(a+b\right)^2+\left(a-x\right)^2\)

3)

\(=x^2-2x+1+y^2+6y+9\)

\(=\left(x-1\right)^2+\left(y+3\right)^2\)

4)

\(=x^2-2xy+y^2+x^2+10x+25\)

\(=\left(x-y\right)^2+\left(x+5\right)^2\)

5)

\(=a^2+2ab+b^2+4b^2+4b+1\)

\(=\left(a+b\right)^2+\left(2b+1\right)^2\)

15 tháng 8 2020

1/ x2 - 4x + 5 + y2 + 2y 

= ( x2 - 4x + 4 ) + ( y2 + 2y + 1 )

= ( x - 2 )2 + ( y + 1 )2

2/ 2a2 + 2ab - 2ax + x2 + b2

= ( a2 + 2ab + b2 ) + ( x2 - 2ax + a2 )

= ( a + b )2 + ( x - a )2

3/ x2 - 2x + y2 + 6y + 10

= ( x2 - 2x + 1 ) + ( y2 + 6y + 9 )

= ( x - 1 )2 + ( y + 3 )2

4/ 2x2 + y2 - 2xy + 10x + 25

= ( x2 - 2xy + y2 ) + ( x2 + 10x + 25 )

= ( x - y )2 + ( x + 5 )2

5/ a2 + 2ab + 5b2 + 4b + 1

= ( a2 + 2ab + b2 ) + ( 4b2 + 4b + 1 )

= ( a + b )2 + ( 2b + 1 )2

20 tháng 9 2021

\(a.=\left(2x\right)^2-2.2x.2y+\left(2y\right)^2=\left(2x-2y\right)^2\)

\(b.=\left(3x\right)^2-2.3x.2+2^2=\left(3x-2\right)^2\)

20 tháng 9 2021

a. 4x2+4y2-8xy=(2x)2+(2y)2-8xy

                        =(2x-2y)2

b.9x2-12x+4=(3x)2-12x+22

                    =(3x-2)2

c.xy2+1/4x2y4+1=xy2+(1/2xy2)2+1

                          =(1/2xy2+2)2