K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
CH
Cô Hoàng Huyền
Admin
VIP
22 tháng 2 2018
Câu hỏi của Vũ Huy Hiệu - Toán lớp 9 - Học toán với OnlineMath
Em tham khảobài tương tự tại đây nhé.
29 tháng 2 2020
Bạn tham khảo nha
Câu hỏi của Nguyễn Quỳnh Nga - Toán lớp 8 | Học trực tuyến
a) Ta có: CD = BC; ^CDE = ^CBF ( = 90o), ^DCE = ^BCF (cùng phụ với ^NCB)
=> \(\Delta\)EDC = \(\Delta\)FBC (g.c.g) => CE = CF.
Chỗ chứng minh 3 điểm thẳng hàng và mấy câu còn lại chưa nghĩ ra:(((
a) Dễ chứng minh \(\Delta\)CDE = \(\Delta\)CBF (g.c.g), suy ra CE = CF.
Ta thấy các tam giác EAF vuông tại A, ECF vuông tại C có M là trung điểm cạnh huyền EF
Suy ra MA = MC (= EF/2). Vậy M,B,D cùng nằm trên trung trực đoạn AC hay M,B,D thẳng hàng.
b) Từ câu a dễ có \(\Delta\)ECF vuông cân tại C. Vì M là trung điểm EF nên \(\Delta\)MEC vuông cân tại M
Do đó ^ACE = ^BCM (= 450 - ^BCE). Đồng thời \(\Delta\)CBA ~ \(\Delta\)CME (g.g) kéo theo \(\Delta\)EAC ~ \(\Delta\)MBC (c.g.c).
c) \(BN=x\Rightarrow AN=a-x\). Áp dụng hệ quả ĐL Thales ta có:
\(\frac{BC}{AE}=\frac{BN}{AN}\) hay \(\frac{a}{AE}=\frac{x}{a-x}\Rightarrow AE=\frac{a^2-ax}{x}\)
Áp dụng ĐL Pytagoras cho \(\Delta\)CDE có:
\(CE^2=CD^2+DE^2=a^2+\left(a+\frac{a^2-ax}{x}\right)^2=\frac{a^4+a^2x^2}{x^2}\)
Lại có \(S_{CAE}=\frac{CD.AE}{2}=\frac{a^3-a^2x}{2x};S_{CEF}=\frac{CE^2}{2}=\frac{a^4+a^2x^2}{2x^2}\)
Suy ra \(S_{ACFE}=\frac{a^3-a^2x}{2x}+\frac{a^4+a^2x^2}{2x^2}=\frac{a^4+a^3x}{2x^2}.\)
d) Ta đã tính được \(S_{ACFE}=\frac{a^4+a^3x}{2x^2};S_{ABCD}=a^2\). Để \(S_{ACFE}=3S_{ABCD}\)thì:
\(\frac{a^4+a^3x}{2x^2}=3a^2\Leftrightarrow a^2+ax-6x^2=0\Leftrightarrow\left(2x-a\right)\left(3x+a\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{a}{2}\\x=-\frac{a}{3}\left(l\right)\end{cases}}\). Vậy \(x=\frac{a}{2}\)hay N là trung điểm đoạn AB thì \(S_{ACFE}=3S_{ABCD}\).