Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Vũ Huy Hiệu - Toán lớp 9 - Học toán với OnlineMath
Em tham khảobài tương tự tại đây nhé.
a) Ta có: CD = BC; ^CDE = ^CBF ( = 90o), ^DCE = ^BCF (cùng phụ với ^NCB)
=> \(\Delta\)EDC = \(\Delta\)FBC (g.c.g) => CE = CF.
Chỗ chứng minh 3 điểm thẳng hàng và mấy câu còn lại chưa nghĩ ra:(((
a) Dễ chứng minh \(\Delta\)CDE = \(\Delta\)CBF (g.c.g), suy ra CE = CF.
Ta thấy các tam giác EAF vuông tại A, ECF vuông tại C có M là trung điểm cạnh huyền EF
Suy ra MA = MC (= EF/2). Vậy M,B,D cùng nằm trên trung trực đoạn AC hay M,B,D thẳng hàng.
b) Từ câu a dễ có \(\Delta\)ECF vuông cân tại C. Vì M là trung điểm EF nên \(\Delta\)MEC vuông cân tại M
Do đó ^ACE = ^BCM (= 450 - ^BCE). Đồng thời \(\Delta\)CBA ~ \(\Delta\)CME (g.g) kéo theo \(\Delta\)EAC ~ \(\Delta\)MBC (c.g.c).
c) \(BN=x\Rightarrow AN=a-x\). Áp dụng hệ quả ĐL Thales ta có:
\(\frac{BC}{AE}=\frac{BN}{AN}\) hay \(\frac{a}{AE}=\frac{x}{a-x}\Rightarrow AE=\frac{a^2-ax}{x}\)
Áp dụng ĐL Pytagoras cho \(\Delta\)CDE có:
\(CE^2=CD^2+DE^2=a^2+\left(a+\frac{a^2-ax}{x}\right)^2=\frac{a^4+a^2x^2}{x^2}\)
Lại có \(S_{CAE}=\frac{CD.AE}{2}=\frac{a^3-a^2x}{2x};S_{CEF}=\frac{CE^2}{2}=\frac{a^4+a^2x^2}{2x^2}\)
Suy ra \(S_{ACFE}=\frac{a^3-a^2x}{2x}+\frac{a^4+a^2x^2}{2x^2}=\frac{a^4+a^3x}{2x^2}.\)
d) Ta đã tính được \(S_{ACFE}=\frac{a^4+a^3x}{2x^2};S_{ABCD}=a^2\). Để \(S_{ACFE}=3S_{ABCD}\)thì:
\(\frac{a^4+a^3x}{2x^2}=3a^2\Leftrightarrow a^2+ax-6x^2=0\Leftrightarrow\left(2x-a\right)\left(3x+a\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{a}{2}\\x=-\frac{a}{3}\left(l\right)\end{cases}}\). Vậy \(x=\frac{a}{2}\)hay N là trung điểm đoạn AB thì \(S_{ACFE}=3S_{ABCD}\).
Đặt cạnh hình vuông là a, ta có \(BD=\sqrt{a^2+a^2}=a\sqrt{2}\)
\(\Rightarrow BO=\dfrac{1}{2}BD=\dfrac{a\sqrt{2}}{2}\Rightarrow BO.BD=a^2\)
Xét 2 tam giác vuông AED và MAB có:
\(\left\{{}\begin{matrix}\widehat{ADE}=\widehat{MBA}=90^0\\\widehat{AED}=\widehat{MAB}\left(slt\right)\end{matrix}\right.\) \(\Rightarrow\Delta AED\sim\Delta MAB\left(g.g\right)\)
\(\Rightarrow\dfrac{AD}{BM}=\dfrac{ED}{AB}\Rightarrow BM.ED=AD.AB=a^2\)
\(\Rightarrow BM.ED=BO.BD\)
Mà \(ED=BF\) (do \(BC=CD\) và \(CE=CF\))
\(\Rightarrow BM.BF=BO.BD\Rightarrow\dfrac{BM}{BD}=\dfrac{BO}{BF}\)
Xét hai tam giác BOM và BFD có:
\(\left\{{}\begin{matrix}\dfrac{BM}{BD}=\dfrac{BO}{BF}\\\widehat{OBM}\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta BOM\sim\Delta BFD\left(c.g.c\right)\)