Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ O vẽ Oz // Mx.
Ta có : Oz // Mx
= > xMO = MOz (so le trong)
Ta lại có : Oz // Mx
Mà Mx // Ny (giả thiết)
=> Oz // Ny (Tiên đề Ơ - clít)
= > zOn + ONy = 180 (Trong cùng phía)
zOn = 180 - ONy = 180 - 110 = 70
Có : MON = MOz + zON = 20 + 70 = 90
=> MO vuông góc với ON
Ta có: \(\widehat{C_1}=\widehat{D_1}=80^o\)
Mà: \(\widehat{C_1}\) và \(\widehat{D_1}\) đồng vị.
\(\Rightarrow\text{a//b}\)
Ta lại có: \(\widehat{A_4}=\widehat{B_2}=45^o\)
Bài 3 :
A B S M C P N x y 1 2 z 1 2
a) Kéo dài tia NM và NM cắt BC tại S
Khi đó ta có :
\(\hept{\begin{cases}\widehat{ABC}=\widehat{BSM}\left(\text{ 2 góc so le trong }\right)\\\widehat{MNP}=\widehat{BSM}\left(\text{ 2 góc so le trong }\right)\end{cases}}\Rightarrow\widehat{ABC}=\widehat{MNP}\Rightarrow\widehat{MNP}=40^o\)
b) Vẽ \(\hept{\begin{cases}\text{Bx là tia phân giác của }\widehat{ABC}\\\text{Ny là tia phân giác của }\widehat{MNP}\end{cases}}\)
\(\Rightarrow\widehat{B_1}=B_2=\widehat{N_1}=\widehat{N_2}=\frac{\widehat{ABC}}{2}=\frac{\widehat{MNP}}{2}=\frac{40^o}{2}=20^o\left(\text{do }\widehat{ABC}=\widehat{MNP}\right)\)
Vẽ Sz // Bx => \(\widehat{B_2}=\widehat{S_1}\)
Lại có \(\widehat{BSN}=\widehat{MSP}\Rightarrow\frac{\widehat{BSN}}{2}=\frac{\widehat{MSP}}{2}\Rightarrow\widehat{S_2}=\widehat{N_1}\)mà \(\widehat{S_2}\text{ và }\widehat{N_1}\)là 2 góc so le trong
=> Sz // Ny mà Sz // Bx => Bx // Ny hay tia phân giác của 2 góc \(\widehat{ABC}\text{ và }\widehat{MNP}\)song song nhau
1.Điều kiện : \(x\ge0\)
\(\Rightarrow\hept{\begin{cases}x+3,4>0\\x+2,4>0\\x+7,2>0\end{cases}}\Rightarrow\hept{\begin{cases}\left|x+3,4\right|=x+3,4\\\left|x+2,4\right|=x+2,4\\\left|x+7,2\right|=x+7,2\end{cases}}\)
\(\Rightarrow\left|x+3,4\right|+\left|x+2,4\right|+\left|x+7,2\right|=x+3,4+x+2,4+x+7,2\)
\(=3x+13=4x\)
\(\Rightarrow4x-3x=13\)
\(\Rightarrow x=13\)
Vậy \(x=13\)
2.\(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)
\(=3^n\left(3^3+3\right)+2^n\left(2^3+2^2\right)\)
\(=3^n\left(27+3\right)+2^n\left(8+4\right)\)
\(=3^n.30+2^n.12\)
\(=6\left(3^n.5+2^n.2\right)⋮6\)
4.a)
- \(3^{34}=3^{30+4}=3^{30}.3^4=3^{3.10}.3^4=\left(3^3\right)^{10}.3^4=27^{10}.3^4\)
\(5^{20}=5^{2.10}=\left(5^2\right)^{10}=25^{10}\)
Vì \(27^{10}>25^{10}\Rightarrow27^{10}.3^4>25^{10}\)
hay \(3^{34}>5^{20}\)
- \(17^{20}=17^{4.5}=\left(17^4\right)^5=83521^5>71^5\)
b)\(2^{300}=2^{3.100}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=3^{2.100}=\left(3^2\right)^{100}=9^{100}\)
Vì \(8^{100}< 9^{100}\Rightarrow2^{300}< 3^{200}\)
vì AB//CD
nên góc C và A là hai góc bù nhau hay
\(C+A=180^0\Rightarrow C=180^0-A=180^0-100^0=80^0\)
Vậy x=80 độ
Ta có hình vẽ:
A x B C y z 120 160
Vẽ tia Bz nằm trong góc ABC sao cho: Ax // Bz
Do Ax // Cy => Ax // Bz // Cy
Ta có:
- xAB + ABz = 180o (trong cùng phía)
=> 120o + ABz = 180o
=> ABz = 180o - 120o
=> ABz = 60o (1)
- zBC + BCy = 180o (trong cùng phía)
=> zBC + 160o = 180o
=> zBC = 180o - 160o
=> zBC = 20o (2)
Từ (1) và (2), lại có: ABz + zBC = ABC
=> 60o + 20o = ABC
=> ABC = 80o = B
Vậy góc B = 80o
vẽ đường thẳng a đi qua B và a // xA ; a //yC
=> xAB + ABa =180 độ (góc trong cùng phía)
=> ABa = 180 - 120 = 60 độ
aBC + yCB =180 độ (góc trong cùng phía)
=> góc aBC = 180 độ - 160 độ = 20 độ
Vì ABa +aBC = góc B
Thay số ta có :
60độ + 20 độ =80 độ
=> góc B =80 độ (đpcm)
Kéo dài BO cắt Dy tại N
\(\Rightarrow\widehat{ABN}=\widehat{BNC}=60^o\) (góc so le trong)
Xét tg ONC có
\(\widehat{NOC}=180^o-\left(\widehat{BNC}+\widehat{OCN}\right)=180^o-\left(60^o+30^o\right)=90^o\Rightarrow OB\perp OC\)
A1 = 135
A3 = B1
A2+B1=180