cho hình thang MNPQ ( MN//PQ) có góc MPQ = góc NQP . chứng minh : tứ giác MNPQ là hình t...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2021

anh đi anh nhớ quê nha 

nhớ canh rau muống nhớ cà dầm tương 

nhớ thằng đẩy bố xuống mương 

bố mà bắt được bố tương vỡ mồm

31 tháng 8 2017

Xét ht MNPQ có MPQ=NQP (tgt)

MÀ 2 góc này là 2 góc kề 1 đáy

=> ht MNPQ là htc (dấu hiệu nhận biết htc)

28 tháng 7 2023

loading...

Xét \(\Delta\)MPQ và \(\Delta\)PMN có: 

MP chung

\(\widehat{QPM}\) = \(\widehat{PMN}\)  (2 góc so le trong)

\(\widehat{QMP}\) = \(\widehat{NPM}\) (2 góc so le trong)

\(\Rightarrow\) \(\Delta\)MPQ = \(\Delta\)PMN (g-c-g)

\(\Rightarrow\) PQ = MN; MQ = PN (đpcm)

b, Xét \(\Delta\)MPQ và \(\Delta\)PMN có:

         MP chung

         MN = PQ 

  \(\widehat{QPM}\) = \(\widehat{PMN}\) ( 2 góc so le trong)

\(\Delta\)MPQ = \(\Delta\)PMN ( cạnh góc cạnh)

\(\Rightarrow\) MQ = NP (đpcm)

⇒ \(\widehat{QMP}\) = \(\widehat{NPM}\) 

   Mà hai góc \(\widehat{QMP}\) và \(\widehat{NPM}\) ở vị trí so le trong và bằng nhau nên:

   QM // NP (đpcm)

28 tháng 7 2023

bài 1 :

a) Ta có MQ//NP (theo giả thiết).

Chứng minh MN = PQ:
Vì MN//PQ và MQ//NP, ta có hai tam giác MNP và QMQ' đồng dạng (theo nguyên lý đồng dạng của tam giác có hai cặp góc tương đồng bằng nhau).

Do đó, ta có tỉ số đồng dạng giữa các cạnh của hai tam giác là:
MN/MQ = NP/QM

Vì MQ//NP, nên ta có tỉ số đồng dạng:
MN/MQ = NP/NP

Từ đó suy ra: MN = PQ.

Chứng minh MQ = NP:
Vì MQ//NP, nên ta có tỉ số đồng dạng:
MQ/MN = NP/PQ

Vì MN = PQ (đã chứng minh ở trên), nên ta có tỉ số đồng dạng:
MQ/MN = NP/NP

Từ đó suy ra: MQ = NP.

b) Ta có MN = PQ (theo giả thiết).

Chứng minh MQ//NP:
Giả sử MQ không // NP. Khi đó, MQ và NP sẽ cắt nhau tại một điểm O.

Vì MN//PQ và MQ//NP, nên ta có hai tam giác MNP và QMQ' đồng dạng (theo nguyên lý đồng dạng của tam giác có hai cặp góc tương đồng bằng nhau).

Do đó, ta có tỉ số đồng dạng giữa các cạnh của hai tam giác là:
MN/MQ = NP/QM

Từ đó suy ra: MN/MQ = NP/NP

Vì MQ//NP, nên ta có tỉ số đồng dạng:
MN/MQ = NP/NP

Từ đó suy ra: MN = PQ.

Điều này mâu thuẫn với giả thiết MN = PQ (đã cho). Vậy giả sử MQ không // NP là sai.

Do đó, ta kết luận rằng MQ//NP.

Chứng minh MQ = NP:
Vì MQ//NP, nên ta có tỉ số đồng dạng:
MQ/MN = NP/PQ

Vì MN = PQ (đã chứng minh ở trên), nên ta có tỉ số đồng dạng:
MQ/MN = NP/NP

Từ đó suy ra: MQ = NP.

bài 2 :

a) Ta có MN = MQ và góc M = 50 độ. Vì tứ giác MNPQ là tứ giác cân (hai cạnh bằng nhau), nên góc N = góc Q.

Vì tổng các góc trong một tứ giác bằng 360 độ, ta có:
góc M + góc N + góc P + góc Q = 360 độ

Thay giá trị vào, ta có:
50 độ + góc N + 90 độ + góc N = 360 độ

Simplifying the equation:
140 độ + 2góc N = 360 độ

Trừ 140 độ từ hai phía:
2góc N = 220 độ

Chia cho 2:
góc N = 110 độ

Vậy số đo góc MQN là 110 độ.

b) Ta đã biết góc P = 90 độ. Vì tứ giác MNPQ là tứ giác cân (hai cạnh bằng nhau), nên góc M = góc Q.

Vì tổng các góc trong một tứ giác bằng 360 độ, ta có:
góc M + góc N + góc P + góc Q = 360 độ

Thay giá trị vào, ta có:
góc M + 110 độ + 90 độ + góc M = 360 độ

Simplifying the equation:
2góc M + 200 độ = 360 độ

Trừ 200 độ từ hai phía:
2góc M = 160 độ

Chia cho 2:
góc M = 80 độ

Vậy số đo góc MQP là 80 độ.

c) Để chứng minh MP vuông góc với NQ, ta cần chứng minh rằng góc MPN + góc NQP = 90 độ.

Ta đã biết góc P = 90 độ. Vì tứ giác MNPQ là tứ giác cân (hai cạnh bằng nhau), nên góc M = góc Q.

Vì tổng các góc trong một tứ giác bằng 360 độ, ta có:
góc M + góc N + góc P + góc Q = 360 độ

Thay giá trị vào, ta có:
góc M + góc N + 90 độ + góc M = 360 độ

Simplifying the equation:
2góc M + góc N = 270 độ

Vì góc M = góc Q, nên ta có:
2góc M + góc M = 270 độ

1 tháng 9 2017

Ta có hình vẽ:

M N P Q I

Gọi I là giao điểm của MP và NQ.

Ta có: góc IQP = góc IPQ (GT)

=> tam giác IQP cân.

=> IQ = IP (hai cạnh bên của tam giác cân)

Ta có: MN // PQ (GT)

=> góc IQP = góc INM (slt)

Ta có: MN // PQ (GT)

=> góc IPQ = góc IMN (slt)

Mà góc IQP = góc IPQ => góc IMN = góc INM

=> tam giác IMN cân => IM = IN.

Ta có: IQ = IP; IM = IN

=> IM + IP = IN + IQ

hay MP = NQ => ABCD là hình thang cân (có hai đường chéo bằng nhau).

B) Kẻ MH vuông góc QP và NK vuông góc với QP ta có :

Ta có : MHK = NKH = 90 độ

=> MH // NK

=> Tứ giác MNKH là hình thang

Mà MHK = NKH = 90 độ

=> Tứ giác MNKH là hình thang cân

=> HMN = MNK = 90 độ

=> MNK = NKH = 90 độ

=> MN // HK 

=> MN// QP

=> MNPQ là hình thang

Mà QMN = MNP (gt)

=> MNPQ là hình thang cân(dpcm)

Ko bt tớ làm đúng ko nếu sai đừng chửi mk nhé

22 tháng 6 2019


A B C D M I 1 2 1 2 1 2

Gọi M là giao điểm DI và AB

Ta có: AM//DC 

=> \(\widehat{M}=\widehat{D_2}\)( sole trong) (1) 

Mà \(\widehat{D_1}=\widehat{D_2}\)( DI là phân giác góc D)

=> \(\widehat{M}=\widehat{D_1}\)

=> Tam giác ADM cân 

=> ID=IM (2) 

Ta lại có: \(\widehat{I_1}=\widehat{I_2}\)( so le trong) (3)

Từ (1) , (2) => Tam giác IBM = tam giác ICD

=> BM=DC

Do  vậy: AD=AM=AB+BM=AB+DC (AD=AM vì tam giác ADM cân)