Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt tính \(2n^2-n+2\) : \(2n+1\) sẽ bằng n - 1 dư 3
Để chia hết thì 3 phải chia hết cho 2n + 1 hay 2n + 1 là ước của 3
Ư(3) = {\(\pm\) 3; \(\pm\) 1}
\(2n+1=1\Leftrightarrow2n=0\Leftrightarrow n=0\)
\(2n+1=-1\Leftrightarrow2n=-2\Leftrightarrow n=-1\)
\(2n+1=3\Leftrightarrow2n=2\Leftrightarrow n=1\)
\(2n+1=-3\Leftrightarrow2n=-4\Leftrightarrow n=-2\)
Vậy \(n=\left\{0;-2;\pm1\right\}\)
Đề sai nên mình sửa chút , 214 chứ không phải 2014 .
(x-214)/86 + (x-132)/84 + (x-54)/82 = 6
- (x-214)/86 + (x-132)/84 + (x-54)/82 - 6 =0
- (x-214)/86 - 1 + (x-132)/84 -2 +(x-54)/82 - 3 =0
- (x-300)/86 + (x-300)/84 +(x-300)/82 =0
- (x - 300 )(1/86 +1/84 +1/82 )=0
- x - 300=0
- x =300 vì 1/86 +1/84 +1/82 khác 0.
Sửa đề: Cho hình bình hành ABCD
Xét tứ giác DBEC có
BE//DC
BE=DC
DO đó: DBEC là hình bình hành
Suy ra: DB//CE và DB=CE
Xét tứ giác BDFC có
BC//DF
BC=DF
Do đó: BDFC là hình bình hành
Suy ra: BD//CF và BD=CF
Ta có: BD//CF
BD//CE
CF và CE có điểm chung là C
Do đó: F,C,E thẳng hàng
mà CE=CF(=BD)
nên C la trung điểm của FE
hay F và E đối xứng nhau qua C
Lời giải:
Ta có \(P\) là trung điểm của $AB$, $N$ là trung điểm của $AC$ nên
\(AP=PB,AN=NC\Rightarrow \frac{AP}{PB}=\frac{AN}{NC}\)
Do đó theo định lý Tales suy ra \(PN\parallel BC\), mà \(AH\perp BC\Rightarrow PN\perp AH\) \((1)\)
Xét tam giác vuông tại $H$ là $AHB$ có $P$ là trung điểm của $AB$ nên $PA=PH$ . Tương tự, \(AN=NH\)$(2)$
Từ \((1),(2)\Rightarrow \) $PN$ là đường trung trực của $AH$
b) Do \(HM\parallel PN\Rightarrow HMNP\) là hình thang \((1)\)
Sử dụng tính chất so le trong và đồng vị với các đoạn \(PN\parallel BC, NM\parallel AB\) ta có:
\(\widehat{HPN}=\widehat{PHB}=90^0-\widehat{PHA}=90^0-\widehat{PAH}=\widehat{ABH}=\widehat{ABC}\)
\(\widehat{MNP}=\widehat{NMC}=\widehat{ABC}\)
Do đó \(\widehat{HPN}=\widehat{MNP}\) \((2)\)
Từ \((1),(2)\Rightarrow HMNP\) là hình thang cân.
Ta có hình vẽ:
M N P Q I
Gọi I là giao điểm của MP và NQ.
Ta có: góc IQP = góc IPQ (GT)
=> tam giác IQP cân.
=> IQ = IP (hai cạnh bên của tam giác cân)
Ta có: MN // PQ (GT)
=> góc IQP = góc INM (slt)
Ta có: MN // PQ (GT)
=> góc IPQ = góc IMN (slt)
Mà góc IQP = góc IPQ => góc IMN = góc INM
=> tam giác IMN cân => IM = IN.
Ta có: IQ = IP; IM = IN
=> IM + IP = IN + IQ
hay MP = NQ => ABCD là hình thang cân (có hai đường chéo bằng nhau).