K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
17 tháng 8 2017
M A B C
a) Ta có : \(S_{AMB}=\frac{cz}{2};S_{BMC}=\frac{ax}{2};S_{MAC}=\frac{by}{2}\)
\(\Rightarrow S_{AMB}+S_{BMC}+S_{MAC}=\frac{cz+ax+by}{2}=S_{ABC}\)
\(\Rightarrow ax+by+cz=2S_{ABC}\)(đpcm)
b) Áp dụng bất đẳng thức Bunhiacopxki ta có :
\(\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)\left(ax+by+cz\right)\ge\left(\sqrt{\frac{a}{x}.ax}+\sqrt{\frac{b}{y}.by}+\sqrt{\frac{c}{z}.cz}\right)^2=\left(a+b+c\right)^2\)
\(\Rightarrow\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)\ge\frac{\left(a+b+c\right)^2}{ax+by+cz}=\frac{2\left(\frac{a+b+c}{2}\right)^2}{\frac{ax+by+cz}{2}}=\frac{2p^2}{S}\)(đpcm)
Kẻ EF ⊥ CD ⇒ AC // EF // AD
Xét ΔBCE và ΔFEC có:
(CAE) = (CFE) = 90o
(BCE) = (CEF) (Hai góc so le trong)
CE chung
⇒ ΔBCE = ΔFEC (cạnh huyền- góc nhọn)
tương tự ΔAED=ΔFDE.
Do đó (theo hình vẽ):
S1 = S2 và S3 = S4
⇒ S2 + S3 = S1 + S4 = (1/2)SABCD
Hay SECD = (1/2)SABCD ⇒ SABCD = 2SECD.