Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) ADĐL pitago vào tam giác vuông DCB , có :
BC2 + DC2 = DB2
=> 62 + 82 = BD2
=> BD2 = 100
=> BD = 10 cm
b)
Xét tam giác ADB và tam giác AHD , có :
A^ = H^ = 90O
D^ ; góc chung
=> tam giác AHD ~ tam giác BAD (g.g)
c)
Vì tam giác AHD ~ tam giác BAD ( câu b )
=> \(\dfrac{AD}{HD}\)= \(\dfrac{BD}{AD}\)
=> AD2 = HD . BD
d)
a) ΔABD vuông tại A (ABCD là hình chữ nhật)
⇒DB2=AB2+AD2(Đinh lí pitago)
DB2=82+62
⇔DB=\(\sqrt{100}\)=10(cm)

Bài 1:
a: BC=10cm
b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó: ΔABC đồg dạg với ΔHBA
c: Xét ΔaBC vuông tại A có AHlà đường cao
nên \(AB^2=BH\cdot BC\)
=>BH=36/10=3,6(cm)
=>CH=6,4cm
d: Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
hay BD/3=CD/4
Áp dụng tính chất của dãy tỉ só bằng nhau ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{10}{7}\)
Do đó:BD=30/7cm

Bài 1)
a) Tứ giác AIHK có 3 góc vuông \(\widehat{HKA}=\widehat{HIA}=\widehat{KAI}=90^0\)
Nên suy ra góc còn lại cũng vuông.Tứ giác có 4 góc vuông là hình chữ nhật
b) Câu này không đúng rồi bạn
Nếu thực sự hai tam giác kia đồng dạng thì đầu bài phải cho ABC vuông cân
Vì nếu góc AKI = góc ABC = 45 độ ( IK là đường chéo đồng thời là tia phân giác của hình chữ nhật)
c) Ta có : Theo hệ thức lượng trong tam giác ABC vuông
\(AB^2=BC.BH=13.4\)
\(\Rightarrow AB=2\sqrt{13}\)
\(AC=\sqrt{9\cdot13}=3\sqrt{13}\)
Vậy \(S_{ABC}=\frac{AB\cdot AC}{2}=\frac{6\cdot13}{2}=39\left(cm^2\right)\)
Bài 2)
a) \(ED=AD-AE=17-8=9\)
Xét tỉ lệ giữa hai cạnh góc vuông trong hai tam giác ABE và DEC ta thấy
\(\frac{AB}{AE}=\frac{ED}{DC}\Leftrightarrow\frac{6}{8}=\frac{9}{12}=\frac{3}{4}\)
Vậy \(\Delta ABE~\Delta DEC\)
b) \(\frac{S_{ABE}}{S_{DEC}}=\frac{AB\cdot AE\cdot\frac{1}{2}}{DE\cdot DC\cdot\frac{1}{2}}=\frac{6\cdot8}{9\cdot12}=\frac{4}{9}\)
c) Kẻ BK vuông góc DC.Suy ra tứ giác ABKD là hình chữ nhật vì có 4 góc vuông
Nên BK = AD và AB = DK
\(\Rightarrow KC=DC-DK=12-6=6\)
Theo định lý Pytago ta có
\(BC=\sqrt{BK^2+KC^2}=\sqrt{17^2+6^2}=5\sqrt{13}\)
a: Xet ΔIDC vuông tại I và ΔHAD vuông tại H có
góc IDC=góc HAD(=góc ABD)
=>ΔIDC đồng dạng với ΔHAD
b: ΔDCB vuông tại C có CI vuông góc DB
nên DI*DB=DC^2=AB^2
c: \(DB=\sqrt{8^2+6^2}=10\left(cm\right)\)
DE là phân giác
=>AE/DA=EB/DB
=>AE/4=EB/5=6/9=2/3
=>AE=8/3cm