K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xet ΔIDC vuông tại I và ΔHAD vuông tại H có

góc IDC=góc HAD(=góc ABD)

=>ΔIDC đồng dạng với ΔHAD

b: ΔDCB vuông tại C có CI vuông góc DB

nên DI*DB=DC^2=AB^2

c: \(DB=\sqrt{8^2+6^2}=10\left(cm\right)\)

DE là phân giác

=>AE/DA=EB/DB

=>AE/4=EB/5=6/9=2/3

=>AE=8/3cm

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)(Tính chất đường phân giác của tam giác)

hay \(\dfrac{AD}{6}=\dfrac{CD}{10}\)

mà AD+CD=AC(D nằm giữa A và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{6}=\dfrac{CD}{10}=\dfrac{AD+CD}{6+10}=\dfrac{AC}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)

Do đó: \(\dfrac{AD}{6}=\dfrac{1}{2}\)

hay AD=3(cm)

Vậy: AD=3cm

6 tháng 2 2022

a) và (b không nhìn rõ

a)Xét tam giác HBA và tam giác ABD có:

góc AHB=góc DAB(=90độ)

góc B chung

=> tam giác HBA đồng dạng tam giác ABD (g-g)

b) xét tam giác HDA và tam giác ADB có

góc AHD =góc DAB(=90độ)

góc D chung

=> tam giác HDA đồng dạng tam giác ADB (g-g)

=>AD/BD=HD/BD=>AD^2=DH.BD

c)vì ABCD là hcn=> BC=AD=6cm

tam giác ABD vuông tại A=> BD^2=AD^2+AB^2(ĐL Pytago)

=>BD^2=6^2+8^2

=>BD=10(cm)

Có AD^2=DH.BD=>6^2=DH.10=>DH=3.6(cm)

tam giác ADH vuông tại H

=>Ad^2=AH^2+HD^2(ĐL Pytago)

=>6^2=AH^2+3,6^2

=>AH=4.8(cm)

11 tháng 3 2022

BẠN CÓ THỂ TRA THAY VÌ HỎI ĐC KO

 

11 tháng 3 2022

nhưng mà web này để hỏi mè =)))

12 tháng 4 2021

Hình bạn tự vẽ nhé

a) Xét ΔABH và ΔCBA có :

^AHB = ^A = 900

^B chung

=> ΔABH ~ ΔCBA (g.g)

b) Vì ΔABC vuông tại A, áp dụng định lí Pythagoras ta có :

\(BC^2=AB^2+AC^2\)

<=> \(BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)

Xét ΔABC có BD là phân giác của ^B nên theo tính chất đường phân giác trong tam giác ta có : \(\dfrac{AD}{AB}=\dfrac{DC}{BC}\)

Theo tính chất dãy tỉ số bằng nhau ta có :

\(\dfrac{AD}{AB}=\dfrac{DC}{BC}=\dfrac{AD+DC}{AB+BC}=\dfrac{AC}{AB+BC}=\dfrac{8}{6+10}=\dfrac{1}{2}\)

=> \(\left\{{}\begin{matrix}\dfrac{AD}{AB}=\dfrac{1}{2}\\\dfrac{DC}{BC}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=\dfrac{1}{2}AB=3cm\\DC=\dfrac{1}{2}BC=5cm\end{matrix}\right.\)

c) Xét ΔABD và ΔHBI có :

^A = ^BHI = 90

^ABD = ^HBI ( do BD là phân giác của ^B )

=> ^ABD ~ ΔHBI (g.g)

=> \(\dfrac{AB}{HB}=\dfrac{BD}{BI}=\dfrac{AD}{HI}\)=> AB.BI = HB.BD ( đpcm )

d) Từ \(\dfrac{AB}{HB}=\dfrac{BD}{BI}=\dfrac{AD}{HI}\)=> \(\dfrac{AB}{AD}=\dfrac{BD}{BI}=\dfrac{HB}{HI}=2\)

Ta có : \(S_{ABD}=\dfrac{1}{2}AB\cdot AD=\dfrac{1}{2}\cdot6\cdot3=9cm^2\)

mà ta có \(\dfrac{S_{ABD}}{S_{HBI}}=2^2=4\)=> SABD = 4SHBI

<=> 9 = 4SHBI <=> SHBI = 9/4cm2

27 tháng 6 2023

tại sao ở câu c, Sabd/Shib lại bằng 22 vậy ạ?

13 tháng 5 2022

(Tự vẽ hình) Sửa đề: Phân giác của góc BCD cắt BD tại I

b) Do \(CI\) là phân giác nên ta có: \(\dfrac{IB}{ID}=\dfrac{BC}{CD}\)

Mặt khác: \(\Delta AHB\sim\Delta BCD\) (câu a) 

\(\Rightarrow\dfrac{BC}{CD}=\dfrac{AH}{HB}\Rightarrow\dfrac{IB}{ID}=\dfrac{AH}{HB}\Rightarrow IB.HB=ID.AH\)

20 tháng 4 2018

a) ADĐL pitago vào tam giác vuông DCB , có :

BC2 + DC2 = DB2

=> 62 + 82 = BD2

=> BD2 = 100

=> BD = 10 cm

b)

Xét tam giác ADB và tam giác AHD , có :

A^ = H^ = 90O

D^ ; góc chung

=> tam giác AHD ~ tam giác BAD (g.g)

c)

Vì tam giác AHD ~ tam giác BAD ( câu b )

=> \(\dfrac{AD}{HD}\)= \(\dfrac{BD}{AD}\)

=> AD2 = HD . BD

d)

20 tháng 4 2018

a) ΔABD vuông tại A (ABCD là hình chữ nhật)

⇒DB2=AB2+AD2(Đinh lí pitago)

DB2=82+62

⇔DB=\(\sqrt{100}\)=10(cm)