\(\Delta ABC\) vuông tại A, đường cao AH.

a) Chứng minh \(...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2021

Bổ sung hình vẽ

2 tháng 5 2019

a) - Xét △ABH và △CAH có :
∠AHB = ∠CHA ( =90o )
∠BAH = ∠ACH ( cùng phụ với ∠ABC )
=> △ABH ∼ △CAH (g-g)
- Áp dụng hệ thức lượng vào △ABC vuông tại A đường cao AH có :
AH2 = BH . CH = 16 . 9 = 144 => AH = 12(cm)
Diện tích △ABC = \(\frac{1}{2}\)AH.BC = \(\frac{1}{2}\).12.25 = 150 ( cm2 )

27 tháng 2 2018

A, Có : góc  HBA = góc ABC ( chung 1 góc )

=> tam giác HBA đông dạng với tam giác ABC ( g.g)

B, câu (A) => HA/AC = BA/BC

=> AB.AC = AH.BC

Tk mk nha

22 tháng 2 2017

A ; Ta có : góc ADB=góc AEC=90 độ( đề cho) 

                góc BAC ( chung)

  vậy tam giác ABD đồng dạnh với tam giác ACE ( góc - góc)

B; Xét tam giác EHB và tam giác BCH có:

  góc CBH = góc BEH=90 độ

    Theo phần a ta lại có góc : EBH=ACE( định lí ta/lét)

        vậy suy ra tam giác EHB đồng dạng với tam giác DHC ( góc - góc)

  dựa theo 2 tam giác đồng dạng ta có tỉ lệ:

           EH/HD=BH/HC ( Ta -lét)

          EH*HC=BH*HD( ĐPCM)

 C; Theo phần a ta có :

 tam giác ABD đồng dạng với tam giác ACE:

suy ra : AB/AD=EA/AC( theo định lí tam giác đồng dạng )

 góc A chung

 vậy tam giác AED đồng dạng với tam giác ABC ( cạnh -góc -cạnh)

     

21 tháng 8 2019

giup mình với mai đi hc rồi