K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2019

6 tháng 11 2021

Ko chắc sẽ đúng

a)* Trên mp ABCD kéo dài MN và AB sao cho MN cắt AB = { I }

Xét mp (SMN) và (SAB) có:

S là điểm chung (1)

I là điểm chung (2)

=> (SMN) n (SAB) = { SI }

* Vì I thuộc mp ABCD (cmt)

G là trọng tâm tam giác SAB

Xét mp (GMN) và (SAB) có:

G và I là điểm chung

=> (GMN) n (SAB) = {GI}

 

 

7 tháng 11 2021

MN và AB // mà sao cắt nhau đc ạ

 

2 tháng 1 2022

Thưa chị, em không vẽ hình vì sợ duyệt, với lại em lớp 9 nên chỉ làm bài này dựa vào chút kiến thức lớp 8 thôi ạ.

a) Hình bình hành ABCD có O là tâm nên O là trung điểm của đường chéo BD.

Xét \(\Delta BDS\)có I và O lần lượt là trung điểm của BS, BD

\(\Rightarrow\)IO là đường trung bình của \(\Delta BDS\)\(\Rightarrow\)IO//DS

Mà \(DS\in mp\left(SAD\right)\)nên IO//\(mp\left(SAD\right)\)(đpcm)

Em không làm được câu b ạ, em xin lỗi chị.

 

a: CD vuông góc AD; CD vuông góc SA

=>CD vuông góc (SAD)

b: BD vuông góc AC; BD vuông góc SA

=>BD vuông góc (SAC)

=>(SBD) vuông góc (SAC)

c: (SC;(ABCD))=(CS;CA)=góc SCA

tan SCA=SA/AC=căn 3

=>góc SCA=60 độ

22 tháng 3 2022

Trong mp(SAD) kẻ DF//SA

SA⊥AD => DF⊥AD mà AD⊥DC => AD⊥(DCF)

Kẻ CH⊥DF => CH⊥AD => CH⊥(SAD)

=> H là hình chiếu của C lên (SAD)

=> \(\widehat{\left(SC,\left(SAD\right)\right)}=\widehat{\left(SC,SH\right)}=\widehat{CSH}\)

ΔCFD=ΔSAB => ΔCFD đều cạnh a => CH= \(\dfrac{\sqrt{3}}{2}a\)

SC= \(\sqrt{2}a\)

Xét tam giác SCH vuông ở H ta có:

sin CSH= \(\dfrac{HC}{SC}\)=\(\dfrac{\sqrt{6}}{4}\)

=>  \(\widehat{CSH}\)= arcsin\(\dfrac{\sqrt{6}}{4}\)

 

 

13 tháng 3 2022

undefinedundefinedundefined