Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Mình nghĩ ý bạn là (MNP)
Trong (ABCD) gọi E = \(NP\cap BD\)
⇒ E ∈ (SBD)
Do K ∈ SD ⇒ K ∈ (SBD). M là trung điểm của SB ⇒ M ∈ (SBD)
Trong (SBD) gọi F = BK \(\cap\) ME
⇒ \(\left\{{}\begin{matrix}F\in BK\\F\in\left(MNP\right)\end{matrix}\right.\) ⇒ F = BK \(\cap\) (MNP)
b, Trong (ABCD) gọi O = AC \(\cap\) BD và H = BN \(\cap\) AC
Trong (SBD) gọi G = BK \(\cap\) SO
Trong (SAC) gọi I = SA \(\cap\) HG
(BNK) \(\cap\) (SAD) = IK
(BNK) \(\cap\) (SCD) = KN
(BNK) \(\cap\) (ABCD) = NB
(BNK) \(\cap\) (SAD) = BI
⇒ Thiết diện tạo bởi hình chóp S.ABCD và (BNK) là tứ giác IKNB
MN là đường trung bình tam giác ABD \(\Rightarrow MN||BD\)
Trong mp (SBD), qua P kẻ đường thẳng song song BD lần lượt cắt SB và SD tại E và F
Gọi I là giao điểm AC mà MN
Trong mp (SAC), nối IP kéo dài cắt SC tại Q
Ngũ giác MNFQE là thiết diện của (MNP) và chóp
a/
Ta có
\(S\in\left(SAC\right);S\in\left(SBD\right)\)
Trong mp (ABCD) gọi O là giao của AC và BD
\(O\in AC\Rightarrow O\in\left(SAC\right);O\in BD\Rightarrow O\in\left(SBD\right)\)
\(\Rightarrow SO\in\left(SAC\right)\) và \(SO\in\left(SBD\right)\) => SO là giao tuyến của (SAC) và (SBD)
b/
Trong mp (ABCD) Từ G dựng đường thẳng // AC cắt BC tại K
Xét tg SAC có
SM=AM (gt); SN=CN (gt) => MN là đường trung bình của tg SAC
=> MN//AC
Mà GM//AC
=> MN//GK mà \(G\in\left(GMN\right)\Rightarrow GK\in\left(GMN\right)\) (Từ 1 điểm trong mặt phẳng chỉ dựng được duy nhất 1 đường thẳng thuộc mặt phẳng đó và // với 1 đường thẳng cho trươc thuộc mặt phẳng)
\(\Rightarrow K\in\left(GMN\right);K\in BC\) => K llaf giao của BC với (GMN)
c/
Ta có
\(KN\in\left(GMN\right);KN\in\left(SBC\right)\) => KN là giao tuyến của (GMN) với (SBC)
Trong (ABCD) KG cắt AB tại H
\(KG\in\left(GMN\right)\Rightarrow KH\in\left(GMN\right)\)
\(KG\in\left(ABCD\right)\Rightarrow KH\in\left(ABCD\right)\)
=> KH là giao tuyến của (GMN) với (ABCD)
Ta có
\(HM\in\left(SAB\right);HM\in\left(GMN\right)\) => HM là giao tuyến của (GMN) với (SAB)
Trong mp(SAC) gọi P là giao của SO với MN
\(P\in MN\Rightarrow P\in\left(GMN\right)\)
Trong mp(SBD) Nối G với P cắt SD tại Q
\(\Rightarrow GP\in\left(GMN\right)\Rightarrow Q\in GMN\)
\(\Rightarrow MQ\in\left(GMN\right)\) mà \(MQ\in\left(SAD\right)\) => MQ là giao tuyến của (GMN) với (SAD)
Ta có
\(NQ\in\left(GMN\right);NQ\in\left(SCD\right)\) => NQ là giao tuyến của (GMN) với (SCD)
=> thiết diện của hình chóp bị cắt bởi (GMN) là đa giác HMQNK
Đáp án D
Theo câu 13, ta có MN // AB
Lại có: O ∈ (MNO) ∩ (ABCD)
Vậy giao tuyến của hai mặt phẳng (MNO) và (ABCD) là đường thẳng d đi qua O và song song với AB.
a: Xét (SAD) và (SBC) có
\(S\in\left(SAD\right)\cap\left(SBC\right)\)
AD//BC
Do đó: (SAD) giao (SBC)=xy, xy đi qua S và xy//AD//BC
b: Xét ΔSAB có
M,N lần lượt là trung điểm của AS,AB
=>MN là đường trung bình của ΔSAB
=>MN//SB
Ta có: MN//SB
SB\(\subset\)(SBC)
MN ko nằm trong mp(SBC)
Do đó: MN//(SBC)