\(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 5 2019

Bạn tự vẽ hình

Gọi N là trung điểm BC \(\Rightarrow AN=\frac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều ABC cạnh a)

\(SN=\frac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều SBC cạnh a)

\(\Rightarrow AN=SN=SA=\frac{a\sqrt{3}}{2}\Rightarrow\Delta SAN\) đều

\(\left\{{}\begin{matrix}BC\perp SN\\BC\perp AN\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAN\right)\)

\(\left(P\right)\perp BC\Rightarrow\left(P\right)//\left(SAN\right)\)

Từ M kẻ \(MD//AN\left(D\in BC\right)\), từ M kẻ \(ME//SA\left(E\in SB\right)\)

\(\Rightarrow\Delta MDE\) là thiết diện của (P) và chóp

Theo đt Talet: \(\frac{MD}{AN}=\frac{ME}{SA}=\frac{DE}{SN}=\frac{BM}{AB}\)

\(\Rightarrow MD=ME=DE=\frac{AN.BM}{AB}=\frac{\frac{a\sqrt{3}}{2}\left(a-b\right)}{a}=\frac{\sqrt{3}}{2}\left(a-b\right)\)

\(\Rightarrow\Delta MDE\) là tam giác đều cạnh \(\frac{\sqrt{3}}{2}\left(a-b\right)\)

Theo công thức diện tích tam giác đều:

\(S_{MDE}=\frac{\left(\frac{\sqrt{3}}{2}\left(a-b\right)\right)^2\sqrt{3}}{4}=\frac{3\sqrt{3}}{16}\left(a-b\right)^2\)

NV
15 tháng 5 2019

Câu 1:

\(ABCI\) là hình vuông \(\Rightarrow\left\{{}\begin{matrix}CD=\sqrt{IC^2+ID^2}=a\sqrt{2}\\AC=\sqrt{AB^2+BC^2}=a\sqrt{2}\end{matrix}\right.\)

\(\Rightarrow AC^2+CD^2=AD^2\Rightarrow\Delta ACD\) vuông cân tạiC

\(\Rightarrow OC\perp CD\) \(\Rightarrow CD\perp\left(SOC\right)\)

Từ O kẻ \(OH\perp SC\Rightarrow OH\perp\left(SCD\right)\) \(\Rightarrow OH\perp SD\)

\(\left\{{}\begin{matrix}BI\perp SO\\BI\perp OC\end{matrix}\right.\) \(\Rightarrow BI\perp\left(SOC\right)\Rightarrow BI\perp OH\)

\(SC=\sqrt{SO^2+OC^2}=a\sqrt{2}\) \(\Rightarrow SH=\frac{SO^2}{SC}=\frac{3a\sqrt{2}}{4}\)

Qua H kẻ đường thẳng song song CD cắt SD tại K

\(\frac{SH}{SC}=\frac{HK}{CD}\Rightarrow HK=\frac{SH.CD}{SC}=\frac{3a}{4}\)

Trên toa OI lấy điểm P sao cho \(OP=\frac{3a}{4}\)

\(\Rightarrow OHKP\) là hình chữ nhật \(\Rightarrow OH//KP\Rightarrow KP\) là đoạn vuông góc chung của \(BI\) và SD

\(\frac{1}{OH^2}=\frac{1}{SO^2}+\frac{1}{OC^2}\Rightarrow KP=OH=\frac{SO.OC}{\sqrt{SO^2+OC^2}}=\frac{a\sqrt{6}}{4}\)

NV
15 tháng 5 2019

Câu 2:

a/ Kẻ \(MH\perp AC\Rightarrow MH\perp\left(SAC\right)\)

\(\Rightarrow\widehat{MSH}\) là góc giữa SM và (SAC)

\(SM=\sqrt{SA^2+\left(\frac{AB}{2}\right)^2}=a\sqrt{10}\) ; \(MH=\frac{1}{2}\frac{2a\sqrt{3}}{2}=\frac{a\sqrt{3}}{2}\)

\(sin\widehat{MSH}=\frac{MH}{SM}=\frac{\sqrt{30}}{20}\Rightarrow\widehat{MSH}\approx15^053'\)

b/ \(\left\{{}\begin{matrix}MC\perp AB\\MC\perp SA\end{matrix}\right.\) \(\Rightarrow MC\perp\left(SAB\right)\)

\(\Rightarrow\widehat{SMA}\) là góc giữa \(\left(SMC\right)\)\(\left(ABC\right)\)

\(tan\widehat{SMA}=\frac{SA}{AM}=3\Rightarrow\widehat{SMA}\approx71^033'\)

c/ Gọi N là trung điểm AC \(\Rightarrow NG=\frac{1}{3}NS\) (t/c trọng tâm)

\(\Rightarrow d\left(G;\left(SAB\right)\right)=\frac{1}{3}d\left(N;\left(SAB\right)\right)\)

Từ N kẻ \(NK\perp AB\Rightarrow NK\perp\left(SAB\right)\)

\(\Rightarrow NK=d\left(N;\left(SAB\right)\right)\)

\(NK=\frac{1}{2}.\frac{2a\sqrt{3}}{2}=\frac{a\sqrt{3}}{2}\Rightarrow d\left(G;\left(SAB\right)\right)=\frac{a\sqrt{3}}{6}\)

NV
19 tháng 4 2019

S A B C N M H

\(SA\perp\left(ABC\right)\Rightarrow SA\perp BC\)

\(BC\perp AB\Rightarrow BC\perp\left(SAB\right)\)

b/ Gọi N là trung điểm SA \(\Rightarrow MN\) là đường trung bình tam giác SAB

\(\Rightarrow MN//SB\Rightarrow SB//\left(CMN\right)\)

\(\Rightarrow d\left(SB;CM\right)=d\left(SB;\left(CMN\right)\right)=d\left(S;\left(CMN\right)\right)\)

Mặt khác SA cắt \(\left(CMN\right)\) tại N

\(NS=NA=\frac{1}{2}SA=a\Rightarrow d\left(S;\left(CMN\right)\right)=d\left(A;\left(CMN\right)\right)\)

\(CM=\sqrt{BC^2+BM^2}=\sqrt{a^2+\frac{a^2}{4}}=\frac{a\sqrt{5}}{2}\)

Kẻ \(AH\perp CM\Rightarrow\Delta MHA\sim\Delta MBC\) (tam giác vuông có 1 góc đối đỉnh)

\(\Rightarrow\frac{AH}{BC}=\frac{AM}{CM}\Rightarrow AH=\frac{BC.AM}{CM}=\frac{a\sqrt{5}}{5}\)

Từ A kẻ \(AK\perp NH\Rightarrow AK=d\left(A;\left(CMN\right)\right)\)

\(\frac{1}{AK^2}=\frac{1}{AN^2}+\frac{1}{AH^2}\Rightarrow AK=\frac{AN.AH}{\sqrt{AN^2+AH^2}}=\frac{a\sqrt{6}}{6}\)

AH
Akai Haruma
Giáo viên
19 tháng 12 2017

Lời giải:

Kẻ $SH$ vuông góc với $SB$

Vì $SA$ vuông góc với đáy nên \(SA\perp BC\). Tam giác $ABC$ vuông tại $B$ nên \(AB\perp BC\)

Ta có:
\(\left\{\begin{matrix} SA\perp BC\\ AB\perp BC\end{matrix}\right.\Rightarrow (SAB)\perp BC\)

\(AH\subset (SAB)\Rightarrow AH\perp BC\)

Kết hợp với \(AH\perp SB\Rightarrow AH\perp (SBC)\)

Do đó \(d(A,(SBC))=AH\)

Xét tam giác $SAB$ vuông tại $A$ có đường cao $AH$ thì theo hệ thức lượng trong tam giác vuông ta có:

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{SA^2}=\frac{1}{a^2}+\frac{1}{a^2}\)

\(\Rightarrow AH=\frac{a\sqrt{2}}{2}\)

Vậy \(d(A,(SBC))=\frac{a\sqrt{2}}{2}\)

NV
19 tháng 5 2019

Bạn ghi lại đề, đề bài từ đoạn "gọi M, Q..." trở đi là thấy ko chính xác nữa

19 tháng 5 2019

Cho hình chóp S.ABCD có ABCD là hình vuông,cạnh a. Hình chiếu vuông góc của S lên ABCD là trung điểm M cạnh AD,SM = a√3/2 . Gọi N,Q là trung điểm của SC,BC.Xác định và tính cosin của góc tạo bởi mp ADN và mp SBC

NV
20 tháng 5 2019

Bạn coi lại dữ liệu bài toán, vừa thừa vừa thiếu

SA=SC=AC nên tam giác SAC đều thì hiển nhiên \(\widehat{CSA}=60^0\) ko cần đề bài phải cho nữa

\(\widehat{ASB}=90^0\) và SA=SB thì tam giác SAB vuông cân tại S nên ta có \(AB=\sqrt{SA^2+SB^2}=a\sqrt{2}\) cũng không cần đề phải cho

Nhưng hoàn toàn ko có dữ liệu BC hoặc góc A của tam giác ABC để định dạng đáy

NV
20 tháng 5 2019

Hình bạn tự vẽ

Ta có \(\left\{{}\begin{matrix}SA\perp AB\\AB\perp AD\end{matrix}\right.\) \(\Rightarrow AB\perp\left(SAD\right)\Rightarrow AB\perp SI\) (1)

Do \(\Delta SAD\) đều \(\Rightarrow SI\perp AD\) (2)

(1), (2) \(\Rightarrow SI\perp\left(ABCD\right)\)

Dễ dàng nhận ra ABKD là hình vuông

\(BD=\sqrt{AB^2+AD^2}=a\sqrt{2}\) ; \(BC=\sqrt{BK^2+CK^2}=a\sqrt{2}\)

\(\Rightarrow BD^2+BC^2=4a^2=CD^2\)

\(\Rightarrow\Delta DBC\) vuông cân tại B \(\Rightarrow CB\perp BD\)

Kéo dài IH và CB cắt nhau tại K

\(IH//BD\) (đường trung bình) \(\Rightarrow BC\perp IH\Rightarrow CK\perp\left(SHI\right)\)

\(\Rightarrow\widehat{CSK}\) là góc giữa SC và (SHI)

\(IC=\sqrt{ID^2+CD^2}=\sqrt{\left(\frac{AD}{2}\right)^2+CD^2}=\frac{a\sqrt{17}}{2}\)

\(SI=\frac{a\sqrt{3}}{2}\) (trung tuyến trong tam giác đều cạnh a)

\(\Rightarrow SC=\sqrt{SI^2+IC^2}=a\sqrt{5}\)

\(BK=BH.sin\widehat{KHB}=\frac{AB}{2}.\frac{IA}{IH}=\frac{AB}{2}.\frac{AB}{2\sqrt{AH^2+IA^2}}=\frac{a\sqrt{2}}{4}\)

\(\Rightarrow CK=BC+BK=a\sqrt{2}+\frac{a\sqrt{2}}{4}=\frac{5a\sqrt{2}}{4}\)

\(\Rightarrow sin\widehat{CSK}=\frac{CK}{SC}=\frac{\sqrt{10}}{4}\Rightarrow\widehat{CSK}\approx52^014'\)