K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2016

Ta vẽ BH // DE và AC cắt BH tại T

Xét tam giác ABT có

AE=EB

MàDE//TB

HayGE//TB

Suy ra GE la đường trung bình tam giác ABT

Hay AG=GT    (2)

Xét tam giác CDG có

DE//BH

Hay GD//HT

Suy ra HT là đường trung bình tam giác CDG

Hay GT=TC           (1)

Từ (1)(2) suy ra

AG=GT=TC

Hay 2AG=GT+TC

Mà GT=TC

Suy ra : 2AG=GC (đpcm)

15 tháng 10 2021

a: Xét tứ giác BEDF có 

BE//DF

BE=DF

Do đó: BEDF là hình bình hành

15 tháng 11 2021

5. Vì tứ giác ABCD là hình bình hành (gt)

=> AD // BC ; AD = BC (tc)

Vì M là trung điểm AD (gt)

     N là trung điểm BC (gt)

     AD = BC (cmt)

=> AM = DM = BN = CN

Vì AD // BC mà M ∈ AD, N ∈ BC

=> MD // BN 

Xét tứ giác MBND có : MD = BN (cmt)

                                     MD // BN (cmt)

=> Tứ giác MBND là hình bình hành (DHNB)

=> BM = DN (tc hình bình hành)

     

15 tháng 11 2021

6. Vì tứ giác ABCD là hình bình hành (gt)

=> AB // CD ; AB = CD (tc)

Vì E là trung điểm AB (gt)

     F là trung điểm CD (gt)

     AB = CD (cmt)

=> AE = BE = DF = DF 

Vì AB // CD mà E ∈ AB, F ∈ CD

=> BE // DF 

Xét tứ giác DEBF có : BE = DF (cmt)

                                     BE // DF (cmt)

=> Tứ giác DEBF là hình bình hành (DHNB)

1: 

a: Xét tứ giác BMDN có 

DM//BN

DM=BN

Do đó: BMDN là hình bình hành

Suy ra: BM//DN

a: Xét ΔIAE và ΔICD có

góc IAE=góc ICD

góc AIE=góc CID

Do đo: ΔIAE đồng dạng với ΔICD

=>IA/IC=IE/ID

=>IA*ID=IC*IE

b: Xét ΔEAD và ΔEBM có

góc EAD=góc EBM

góc AED=góc BEM

=>ΔEAD đồng đạng với ΔEBM

=>EA/EB=ED/EM=AD/BM

=>EB/EA=EM/ED

Xét ΔMDC có BE//DC

nên EM/ED=BM/BC

=>BM/BC=EB/EA

18 tháng 12 2021

a: Xét tứ giác DEBF có 

FD//BE

FD=BE

Do đó: DEBF là hình bình hành

15 tháng 12 2022

a: Xét tứ giác DEBF có

BE//DF

BE=DF

Do đó: DEBF là hình bình hành

b: Vì DEBFlà hình bình hành

nên DB cắt EF tại trung điểm của mỗi đường(1)

Vì ABCD là hình bình hành

nên AC cắt BD tại trung điểm của mỗi đường(2)

Từ (1), (2) suy ra E,O,F thẳng hàng

c: Để DEBF là hình thoi thì DE=BE=AB/2

Xét ΔDAB có

DE là trung tuyến

DE=AB/2

Do đo:ΔDAB vuông tại D

=>DA vuông góc với DB

a: Xét ΔAED và ΔCFB có

AD=CB

\(\widehat{ADE}=\widehat{CBF}\)

DE=BF

Do đó: ΔAED=ΔCFB

Suy ra:  AE=CF

Xét ΔABF và ΔCDE có

AB=CD

\(\widehat{ABF}=\widehat{CDE}\)

BF=DE

Do đó: ΔABF=ΔCDE

Suy ra: AF=CE

Xét tứ giác AECF có

AF=CE

AE=CF

Do đó: AECF là hình bình hành