Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta thấy \(\Delta\)CEF có CO vừa là phân giác ^ECF, vừa vuông góc với EF, suy ra \(\Delta\)CEF cân tại C
Vì tứ giác ABCD là hình bình hành nên DC = AB = BE (1)
Ta có ^BCO = ^DCO suy ra (OB = (OD hay OB = OD (2); lại có ^ODC = ^OBE (Tứ giác BCDO nội tiếp) (3)
Từ (1);(2);(3) suy ra \(\Delta\)OBE = \(\Delta\)ODC (c.g.c) (đpcm).
b) Từ câu a ta có OC = OE. Tương tự OC = OF. Vậy O là tâm ngoại tiếp \(\Delta\)CEF (đpcm).
c) Dễ có \(\Delta\)OIB ~ \(\Delta\)DIC suy ra IB.DC = IC.OB hay IB.BE = IC.OB. Tương tự ID.DF = IC.OD
Từ đó IB.BE = ID.DF (Vì OB = OD). Mà EI = FI (Vì I thuộc trung trực EF) nên IB.BE.EI = ID.DF.FI (đpcm).
a. Ta thấy ngay BCDO là tứ giác nội tiếp nên \(\widehat{MBO}=\widehat{ODC}\) (Góc ngoài tại đỉnh đổi)
b. Xét tam giác CMN có CO là đường cao đồng thời phân giác, vậy nó là tam giác cân. Từ đó suy ra \(\widehat{CMA}=\widehat{CNA}\)
Do ABCD là hình bình hành nên \(\widehat{CNA}=\widehat{BAM}\Rightarrow\widehat{BAM}=\widehat{BMA}\Rightarrow BM=BA=DC\left(1\right)\)
Xét trong đường tròn ngoại tiếp tam giác BDC có \(\widehat{BCO}=\widehat{DCO}\Rightarrow BO=OD\left(2\right)\)
Theo câu a, \(\widehat{MBO}=\widehat{ODC}\left(3\right)\)
Từ (1), (2), (3) suy ra \(\Delta OBM=\Delta ODC\left(g-c-g\right)\)
a) CM: \(\widehat{OBM}=\widehat{ODC}\)
\(\widehat{OBM}+\widehat{OBC}=180^o\)( kề bù)
\(\widehat{ODC}+\widehat{OBC}=180^o\)( tứ giác ODCB nội tiếp )
=> \(\widehat{OBM}=\widehat{ODC}\)
b)
+)Xét tam giác MCN có CO là tia phân giác đồng thời là đường cao
=> Tam giác CMN cân tại C (1)
=> \(\widehat{BMA}=\widehat{DNA}=\widehat{BAM}\)( CD//BA => DN//BA)
=> Tam giác BMA cân tại B
=> BM=BA=CD ( ABCD là hình bình hành) (2)
+) CO là phân giác \(\widehat{BCD}\)
=> \(\widebat{BO}=\widebat{DO}\)
=> BO=DO (3)
+) Xét tam giác BOM và tam giác DOC có:
\(\widehat{OBM}=\widehat{ODC}\)( theo a)
BM=CD ( theo 2)
BO=DO (theo 3)
=> \(\Delta BOM=\Delta DOC\)
+) OM=OC
Và từ (1) => CO là đường trung trực của MN
=> OM=ON
Vậy OM=ON=OC
=> O là tâm đường tròn ngoại tiếp tam giác CMN
c) GỌi H là giao của IO và BD
=> IH vuông BD và H là trung điể m BD
Ta có: \(KD^2=\left(HD-HK\right)^2=HD^2+HK^2-2.HD.HK=ID^2-IH^2+IK^2-IH^2-2HD\left(HD-KD\right)\)
\(=ID^2+IK^2-2\left(IH^2+HD^2\right)+2HD.KD=ID^2+IK^2-2ID^2+2HD.KD\)
\(=IK^2-ID^2+2HD.KD\)
=> \(IB^2-IK^2=ID^2-IK^2=2HD.KD-KD^2\)
=> \(\frac{IB^2-IK^2}{KD^2}=\frac{2HD-KD}{KD}=\frac{BD-KD}{KD}=\frac{BK}{KD}\)(4)
Ta lại có: CK là phân giác trong của tam giác CBD
=> \(\frac{BK}{KD}=\frac{CB}{CD}\)
Và MB=DC ( theo cm câu a) , CM=CN ( Tam giác CMN cân)
=> CB=DN
=> \(\frac{BK}{KD}=\frac{DN}{MB}\)(5)
Từ (4), (5)
=> ĐPCM