Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì Đường tròn (O;R) có đường kính BC cắt AB, AC lần lượt là F và E => góc HEA = góc HFA = 90o
mà hai góc này là hai góc đối nhau=> tứ giác AFHE nội tiếp
△ABC nội tiếp đường tròn đường kính BC.
\(\Rightarrow\)△ABC vuông tại A.
- Ta có: \(\widehat{ABC}+\widehat{ABG}=90^0\) (\(BG\perp BC\) tại B).
\(\widehat{EBG}+\widehat{ABG}=90^0\) (\(AB\perp EB\) tại B).
\(\Rightarrow\widehat{ABC}=\widehat{EBG}\)
△ABC và △EBG có: \(\widehat{ABC}=\widehat{EBG}\) (cmt)
\(AB=EB\) (ABED là hình vuông).
\(\widehat{BAC}=\widehat{BEG}=90^0\)
\(\Rightarrow\)△ABC=△EBG (g-c-g).
\(\Rightarrow\widehat{ACB}=\widehat{EGB}\) (1).
AFBC là tứ giác nội tiếp có \(\widehat{EFB}\) là góc ngoài đỉnh F.
\(\Rightarrow\widehat{ACB}=\widehat{EFB}\) (2).
(1), (2) \(\Rightarrow\widehat{EGB}=\widehat{EFB}\) nên GEBF nội tiếp.
a) góc BED nội tiếp chắn nửa đg tròn đg kính BD => góc BED =900 hay góc BEC =900
=> góc BEC = góc BAC = 900 => tứ giác ACBE nội tiếp đg tròn đg kính BC, tâm G là trung điểm BC
b) tứ giác ACBE nội tiếp => góc ABC = góc AEC (1)
mặt khác B,D,E,F thuộc đg tròn đg kính BD => BDEF là tứ giác nội tiếp => góc AED = góc DBF (góc ngoài bằng góc đối trog)
hay góc AEC = góc ABF (2)
từ (1) và (2) => đpcm
c) trog (G) góc AGB = 2 góc ACB (góc nội tiếp và góc ở tâm) => góc AGB = 1200 => sđ cung AB = 1200
mặt khác tam giác AGC đều nên GA =3cm
từ đó bn tính đc S quạt AGBA = \(27\pi\left(cm^2\right)\)
a) Xét (O,R)(O,R) đường kính BCBC có
ˆBFC=ˆBEC=90oBFC^=BEC^=90o (góc nội tiếp chắn nửa đường tròn)
⇒ˆAFH=ˆAEH=90o⇒AFH^=AEH^=90o
Tứ giác AFHEAFHE có ˆAFH+ˆAEH=180oAFH^+AEH^=180o
⇒AEFH⇒AEFH thuộc đường tròn đường kính (AH)(AH)
Tâm II là trung điểm của AHAH.
b) Xét ΔAHEΔAHE và ΔBHDΔBHD có:
ˆAEH=ˆBDH=90oAEH^=BDH^=90o
ˆAHE=ˆBHDAHE^=BHD^ (đối đỉnh)
⇒ΔAHE∼ΔBHD⇒ΔAHE∼ΔBHD (g-g)
⇒HEHD=HAHB⇒HEHD=HAHB (hai cạnh tương ứng tỉ lệ)
Mà HA=2HIHA=2HI
⇒HE.HB=2HD.HI⇒HE.HB=2HD.HI
c) Tứ giác AEHFAEHF nội tiếp đường tròn đường kính (AH)(AH) chứng minh câu a
⇒IE=IH=R⇒ΔIEH⇒IE=IH=R⇒ΔIEH cân đỉnh II
⇒ˆIEH=ˆIHE⇒IEH^=IHE^
ˆIHE=ˆBHDIHE^=BHD^ (đối đỉnh)
Từ hai điều trên ⇒ˆIEH=ˆBHD⇒IEH^=BHD^
ˆHEO=ˆHBDHEO^=HBD^ (do ΔOEBΔOEB cân đỉnh O)
⇒ˆIEO=ˆIEH+ˆHEO=ˆBHD+ˆHBD=90o⇒IEO^=IEH^+HEO^=BHD^+HBD^=90o (do ΔDHB⊥DΔDHB⊥D)
⇒IE⊥EO⇒IE⇒IE⊥EO⇒IE là tiếp tuyến của (O)(O).
Chứng minh tương tự
ˆIFH=ˆIHF=ˆDHCIFH^=IHF^=DHC^
ˆHFO=ˆOCHHFO^=OCH^
⇒ˆIFO=ˆDHC+ˆOCH=90o⇒IFO^=DHC^+OCH^=90o
⇒IF⊥FO⇒IF⇒IF⊥FO⇒IF là tiếp tuyến của (O)(O)
góc GDC=góc GBC=90 => tứ giác nội típ
I là trung điểm của GC
BFC vuông cân niềm tin ak