Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình giải tắt nhé vì mình không giỏi dùng công thức. Thông cảm nha.
1.
\(\left\{{}\begin{matrix}3x-y=2m+3\\x+y=3m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m}{4}+1\\y=\dfrac{-5m}{4}\end{matrix}\right.\)
vậy phương trình có nghiệm duy nhất là \(\left(\dfrac{m}{4}+1;\dfrac{-5m}{4}\right)\)
Thay vào đẳng thức ta được:
\(\left(\dfrac{m}{4}+1\right)^2+\left(\dfrac{-5m}{4}\right)^2=5\\ \Leftrightarrow x=\)
- Để phương trình có nghiệm duy nhất :
<=> \(\frac{m-1}{2m}\ne\frac{-1}{-1}\ne1\)
<=> \(m-1\ne2m\)
<=> \(m\ne-1\)
- Ta có : \(\left\{{}\begin{matrix}\left(m-1\right)x-y=-1\\2mx-y=1\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=\frac{y-1}{m-1}\\\frac{2m\left(y-1\right)}{m-1}-y=1\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=\frac{y-1}{m-1}\\\frac{2m\left(y-1\right)}{m-1}-\frac{y\left(m-1\right)}{m-1}=1\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=\frac{y-1}{m-1}\\2m\left(y-1\right)-y\left(m-1\right)=m-1\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=\frac{y-1}{m-1}\\2my-2m-my+y-m+1=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=\frac{y-1}{m-1}\\y=\frac{3m-1}{m+1}\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=\frac{\frac{3m-1}{m+1}-1}{m-1}=\frac{\frac{3m-1-m-1}{m+1}}{m-1}=\frac{\frac{2m-2}{m+1}}{m-1}=\frac{2\left(m-1\right)}{\left(m+1\right)\left(m-1\right)}=\frac{2}{m+1}\\y=\frac{3m-1}{m+1}\end{matrix}\right.\)
Ta có : \(\left(\frac{2}{m+1}\right)^2+\left(\frac{3m-1}{m+1}\right)^2< 5\)
=> \(\frac{4+9m^2-6m+1-5m^2-10m-5}{m^2+2m+1}< 0\)
=> \(\frac{4m^2-16m}{m^2+2m+1}< 0\)
=> \(4m\left(m-4\right)< 0\)
=> \(\left\{{}\begin{matrix}m>0\\m< 4\end{matrix}\right.\) or \(\left\{{}\begin{matrix}m< 0\\m>4\end{matrix}\right.\)
=> \(0< m< 4\) or \(4< m< 0\left(l\right)\)
Vậy ....
Có lẽ bạn ghi nhầm đề, nhìn cái pt đầu tiên thực sự là kì quặc
Để pt có nghiệm duy nhất thì \(m\ne0\)
\(m+my=3m\Rightarrow y=2\)
\(\Rightarrow mx-2=m^2-2\Rightarrow x=m\)
\(x^2-2x-y>0\Leftrightarrow m^2-2m-2>0\)
\(\Leftrightarrow\left(m-1\right)^2>3\Leftrightarrow\left[{}\begin{matrix}m-1>\sqrt{3}\\m-1< -\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}m>\sqrt{3}+1\\m< 1-\sqrt{3}\end{matrix}\right.\)
Pt luôn luôn có nghiệm duy nhất
\(\left\{{}\begin{matrix}x+my=3m\\m^2x-my=m^3-2m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{m^3+m}{m^2+1}=m\\y=2\end{matrix}\right.\)
Thật kì diệu, kết quả vẫn y hệt như bên trên, nên bạn chỉ cần nối đoạn sau vào là được =))
pt (1) <=>\(x=2+my-4m\) thay vào pt (2) có:
\(\left(2+my-4m\right)m+y=3m+1\)
<=>\(y\left(m^2+1\right)=m+4m^2+1\) (3)
Để hpt có nghiệm <=> pt (3) có nghiệm
<=> \(m^2+1\ne0\) (luôn đúng với mọi m)
=> pt (3) có nghiệm duy nhất => hpt có nghiệm duy nhất với mọi m.
Do x0,y0 là 1 nghiệm của hệ => \(\left\{{}\begin{matrix}x_0-my_0=2-4m\\my_0+y_0=3m+1\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}x_0-2=m\left(y_0-4\right)\\y_0-1=m\left(3-x_0\right)\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}\left(x_0-2\right)\left(3-x_0\right)=m\left(3-x_0\right)\left(y_0-4\right)\\\left(y_0-1\right)\left(y_0-4\right)=m\left(3-x_0\right)\left(y_0-4\right)\end{matrix}\right.\)
=>\(\left(x_0-2\right)\left(3-x_0\right)=\left(y_0-1\right)\left(y_0-4\right)\)
<=>\(5x_0-x_0^2-6=y_0^2-5y_0+4\)
<=>\(x^2_0+y^2_0-5\left(y_0+x_0\right)+10=0\)